亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DaDIA: Hybridizing Data-Dependent and Data-Independent Acquisition Modes for Generating High-Quality Metabolomic Data

化学 工作流程 代谢组 数据质量 代谢组学 数据挖掘 数据采集 数据库 色谱法 计算机科学 运营管理 操作系统 经济 公制(单位)
作者
Jian Guo,Sam Shen,Shipei Xing,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (4): 2669-2677 被引量:40
标识
DOI:10.1021/acs.analchem.0c05022
摘要

Existing data acquisition modes such as full-scan, data-dependent (DDA), and data-independent acquisition (DIA) often present limited capabilities in capturing metabolic information in liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. In this work, we proposed a novel metabolomic data acquisition workflow that combines DDA and DIA analyses to achieve better metabolomic data quality, including enhanced metabolome coverage, tandem mass spectrometry (MS2) coverage, and MS2 quality. This workflow, named data-dependent-assisted data-independent acquisition (DaDIA), performs untargeted metabolomic analysis of individual biological samples using DIA mode and the pooled quality control (QC) samples using DDA mode. This combination takes advantage of the high-feature number and MS2 spectral coverage of the DIA data and the high MS2 spectral quality of the DDA data. To analyze the heterogeneous DDA and DIA data, we further developed a computational program, DaDIA.R, to automatically extract metabolic features and perform streamlined metabolite annotation of DaDIA data set. Using human urine samples, we demonstrated that the DaDIA workflow delivers remarkably improved data quality when compared to conventional DDA or DIA metabolomics. In particular, both the number of detected features and annotated metabolites were greatly increased. Further biological demonstration using a leukemia metabolomics study also proved that the DaDIA workflow can efficiently detect and annotate around 4 times more significant metabolites than DDA workflow with broad MS2 coverage and high MS2 spectral quality for downstream statistical analysis and biological interpretation. Overall, this work represents a critical development of data acquisition mode in untargeted metabolomics, which can greatly benefit untargeted metabolomics for a wide range of biological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
sjj完成签到,获得积分10
13秒前
yys10l完成签到,获得积分10
17秒前
19秒前
幽默酸奶完成签到 ,获得积分10
24秒前
YifanWang应助科研通管家采纳,获得10
25秒前
25秒前
打打应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
YifanWang应助科研通管家采纳,获得20
25秒前
Orange应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
26秒前
Leif完成签到 ,获得积分0
27秒前
32秒前
平凡之路发布了新的文献求助10
33秒前
ding应助罗哈哈采纳,获得10
33秒前
搜集达人应助第四个影子采纳,获得10
35秒前
颜千琴发布了新的文献求助10
38秒前
40秒前
CipherSage应助颜千琴采纳,获得10
42秒前
罗哈哈发布了新的文献求助10
43秒前
李爱国应助科研工作者采纳,获得10
43秒前
叫我江从心就好了完成签到,获得积分10
46秒前
小肖完成签到 ,获得积分10
49秒前
下雨天留客完成签到,获得积分10
50秒前
51秒前
52秒前
54秒前
57秒前
58秒前
平凡之路完成签到,获得积分20
59秒前
小易发布了新的文献求助10
59秒前
satohoang发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助wise111采纳,获得10
1分钟前
鲁丁丁完成签到 ,获得积分10
1分钟前
satohoang完成签到,获得积分10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736611
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020021
捐赠科研通 2997226
什么是DOI,文献DOI怎么找? 1644486
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648