Sustainable development scale of housing estates: An economic assessment using machine learning approach

房地产 持续性 人口 业务 经济适用房 城市规划 比例(比率) 引爆点(物理) 结算(财务) 经济 经济增长 公共经济学 地理 财务 工程类 土木工程 人口学 付款 社会学 电气工程 生物 地图学 生态学
作者
Bo Tang,Winky K.O. Ho,Siu Wai Wong
出处
期刊:Sustainable Development [Wiley]
卷期号:29 (4): 708-718 被引量:5
标识
DOI:10.1002/sd.2168
摘要

Abstract Economic sustainability is often addressed from the perspective of economic growth and at the national level. In contrast, this research attempts to examine the question of economic sustainability of human settlement at a local project level. Urban planners need to strike a balance between dispersal and over‐concentration of population in cities. The existing theories suggest that either excessively low or extremely high levels of household concentration is undesirable to a neighborhood. In this study, an economic assessment using machine learning (ML) techniques is used to identify the threshold scale of a housing estate, which comprises many privately owned residential units (like condos) with shared amenities. Using two decades of property transaction data in Hong Kong as our evidence, this study has found that a tipping point exists in the development scale of these housing estates. Housing values initially rise with the number of residential units in a housing estate but gradually fall when it increases beyond a critical limit. This nonlinear economic relationship is attributed to the per household share of common facilities, which does not increase sufficiently to match with the growing population density of the housing estates. The policy implication is that, to optimize housing supply, urban planning should not just focus on increasing the development bulk of housing but should also pay attention to the possible bottlenecks in the provision of shared amenities in the neighborhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ada完成签到 ,获得积分10
刚刚
共享精神应助木槿采纳,获得10
2秒前
3秒前
Zhouzhou应助zhang001采纳,获得10
3秒前
4秒前
大胆飞荷完成签到,获得积分10
5秒前
赘婿应助段段采纳,获得10
5秒前
6秒前
左一酱完成签到 ,获得积分10
6秒前
7秒前
7秒前
Galaxy完成签到,获得积分10
7秒前
爱吃芒果果儿完成签到 ,获得积分10
12秒前
调研昵称发布了新的文献求助10
12秒前
小王同学发布了新的文献求助10
12秒前
13秒前
14秒前
今后应助wwpedd采纳,获得20
14秒前
16秒前
zhouzhou打工人完成签到,获得积分10
18秒前
yyx发布了新的文献求助10
19秒前
无名老大应助zz采纳,获得20
19秒前
传奇3应助daisy采纳,获得10
21秒前
千里江山一只蝇完成签到,获得积分10
21秒前
深情安青应助一路硕博采纳,获得10
23秒前
26秒前
28秒前
presumme发布了新的文献求助10
30秒前
30秒前
30秒前
30秒前
英姑应助shanbaibai采纳,获得100
31秒前
32秒前
孙文昭完成签到,获得积分10
33秒前
Orange应助Nick爱学习采纳,获得10
33秒前
帅狗发布了新的文献求助10
34秒前
35秒前
35秒前
所所应助nenoaowu采纳,获得10
36秒前
共享精神应助帅狗采纳,获得30
39秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416111
求助须知:如何正确求助?哪些是违规求助? 3017776
关于积分的说明 8882650
捐赠科研通 2705369
什么是DOI,文献DOI怎么找? 1483503
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680802