Teacher self-efficacy and burnout: Determining the directions of prediction through an autoregressive cross-lagged panel model.

心理学 倦怠 自回归模型 自我效能感 结构方程建模 面板数据 计量经济学 面板分析 发展心理学 社会心理学 回归分析 临床心理学 统计 经济 数学
作者
Lisa Kim,Irena Burić
出处
期刊:Journal of Educational Psychology [American Psychological Association]
卷期号:112 (8): 1661-1676 被引量:36
标识
DOI:10.1037/edu0000424
摘要

[Correction Notice: An Erratum for this article was reported online in Journal of Educational Psychology on Sep 17 2020 (see record 2020-70452-001). In the original article, one of the studies discussed (Praetorius et al., 2017), was incorrectly interpreted. The longitudinal study findings from Praetorius et al (2017) challenged the assumption that TSE may be an antecedent construct. When teachers’ stable inter-individual differences were taken into account, there were no significant cross-lagged effects from TSE to teaching quality (or vice versa).] It is often assumed that low levels of teacher self-efficacy (TSE) leads to negative outcomes, including burnout; however, the temporal order of the construct predictions has rarely been examined. We used an autoregressive cross-lagged panel design to examine whether TSE and burnout are concurrently associated with each other, whether TSE predicts future burnout levels, and/or whether burnout predicts future TSE levels. An initial sample of 3,002 Croatian teachers (82% female) from across three educational levels (i.e., elementary, middle, and secondary schools) with varying years of teaching experiences (M = 15.28, SD = 10.50) completed questionnaires on their levels of TSE and burnout (exhaustion and disengagement) at 3 time points (at approximately 6-month intervals). We found that burnout has a more prominent role in predicting future levels of TSE than TSE does in predicting future levels of burnout. These findings challenge the theoretical and empirical conceptualizations assuming that TSE is a predictor of burnout. Policies and interventions that focus on decreasing teacher burnout rather than increasing TSE levels may be best. (PsycInfo Database Record (c) 2020 APA, all rights reserved)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQQ发布了新的文献求助30
刚刚
1秒前
slzhao发布了新的文献求助10
1秒前
2秒前
雪花火完成签到,获得积分10
3秒前
米尔的猫完成签到,获得积分10
3秒前
Nikkiiii完成签到,获得积分10
3秒前
慈祥的孤兰完成签到,获得积分10
4秒前
GBY发布了新的文献求助10
4秒前
迷路海蓝完成签到,获得积分10
4秒前
QCL完成签到,获得积分20
4秒前
CL完成签到,获得积分10
4秒前
珂伟完成签到,获得积分10
4秒前
备注完成签到,获得积分10
4秒前
fanfan完成签到,获得积分10
4秒前
眼睛大花生完成签到,获得积分10
5秒前
5秒前
王一g完成签到,获得积分10
5秒前
csy发布了新的文献求助10
6秒前
dahong完成签到 ,获得积分10
6秒前
吴也行发布了新的文献求助10
6秒前
万能图书馆应助洋洋采纳,获得10
6秒前
贪玩的亦丝完成签到,获得积分10
6秒前
冰糖葫芦完成签到 ,获得积分10
6秒前
传奇发布了新的文献求助10
8秒前
8秒前
憨憨完成签到 ,获得积分10
9秒前
开心超人完成签到,获得积分10
9秒前
机智篮球完成签到,获得积分10
9秒前
lss完成签到,获得积分20
9秒前
勤劳半青完成签到,获得积分10
9秒前
10秒前
MARS完成签到 ,获得积分10
10秒前
简单男孩完成签到,获得积分10
10秒前
雨兔儿完成签到,获得积分10
10秒前
meiqiu完成签到 ,获得积分10
11秒前
多多少少忖测的情完成签到,获得积分10
11秒前
lvjia完成签到,获得积分10
12秒前
叮当应助积极方盒采纳,获得10
13秒前
英姑应助珍珠爱学习采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806126
关于积分的说明 7868151
捐赠科研通 2464545
什么是DOI,文献DOI怎么找? 1311866
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601862