Precision toxicity correlates of tumor spatial proximity to organs at risk in cancer patients receiving intensity-modulated radiotherapy

医学 放射治疗 毒性 肿瘤科 强度(物理) 癌症 内科学 放射科 光学 物理
作者
Andrew Wentzel,Peter Hanula,Lisanne V. van Dijk,Baher Elgohari,Abdallah Mohamed,Carlos Cárdenas,Clifton D. Fuller,David M. Vock,Guadalupe Canahuate,G. Elisabeta Marai
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:148: 245-251 被引量:23
标识
DOI:10.1016/j.radonc.2020.05.023
摘要

Purpose Using a 200 Head and Neck cancer (HNC) patient cohort, we employ patient similarity based on tumor location, volume, and proximity to organs at risk to predict radiation-associated dysphagia (RAD) in a new patient receiving intensity modulated radiation therapy (IMRT). Material and methods All patients were treated using curative-intent IMRT. Anatomical features were extracted from contrast-enhanced tomography scans acquired pre-treatment. Patient similarity was computed using a topological similarity measure, which allowed for the prediction of normal tissues' mean doses. We performed feature selection and clustering, and used the resulting groups of patients to forecast RAD. We used Logistic Regression (LG) cross-validation to assess the potential toxicity risk of these groupings. Results Out of 200 patients, 34 patients were recorded as having RAD. Patient clusters were significantly correlated with RAD (p < .0001). The area under the receiver-operator curve (AUC) using pre-established, baseline features gave a predictive accuracy of 0.79, while the addition of our cluster labels improved accuracy to 0.84. Conclusion Our results show that spatial information available pre-treatment can be used to robustly identify groups of RAD high-risk patients. We identify feature sets that considerably improve toxicity risk prediction beyond what is possible using baseline features. Our results also suggest that similarity-based predicted mean doses to organs can be used as valid predictors of risk to organs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋葱完成签到 ,获得积分10
刚刚
可爱的函函应助LL采纳,获得10
1秒前
斯文败类应助cumtxzs采纳,获得10
2秒前
2秒前
2秒前
3秒前
劲秉应助宋书航采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
暖冬的向日葵完成签到,获得积分10
3秒前
脑洞疼应助糊涂的水之采纳,获得10
4秒前
康康完成签到,获得积分10
4秒前
cj完成签到 ,获得积分10
4秒前
amupf完成签到 ,获得积分10
5秒前
5秒前
omo完成签到,获得积分10
5秒前
siqilinwillbephd完成签到,获得积分10
5秒前
6秒前
小慈爱鸡完成签到 ,获得积分10
7秒前
8秒前
8秒前
善良书蕾发布了新的文献求助10
8秒前
Ma发布了新的文献求助10
10秒前
jiangshanshan完成签到,获得积分20
11秒前
纯情的寻绿完成签到,获得积分10
11秒前
11秒前
orixero应助Fort采纳,获得10
11秒前
lfy完成签到,获得积分10
12秒前
lizh187发布了新的文献求助10
12秒前
风趣的天真完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
dali发布了新的文献求助10
15秒前
司徒骁发布了新的文献求助10
16秒前
16秒前
搜集达人应助Rjy采纳,获得10
16秒前
cc完成签到,获得积分20
16秒前
萧诗双完成签到,获得积分0
16秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771