Precision toxicity correlates of tumor spatial proximity to organs at risk in cancer patients receiving intensity-modulated radiotherapy

医学 放射治疗 毒性 肿瘤科 强度(物理) 癌症 内科学 放射科 光学 物理
作者
Andrew Wentzel,Peter Hanula,Lisanne V. van Dijk,Baher Elgohari,Abdallah Mohamed,Carlos Cárdenas,Clifton D. Fuller,David M. Vock,Guadalupe Canahuate,G. Elisabeta Marai
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:148: 245-251 被引量:23
标识
DOI:10.1016/j.radonc.2020.05.023
摘要

Purpose Using a 200 Head and Neck cancer (HNC) patient cohort, we employ patient similarity based on tumor location, volume, and proximity to organs at risk to predict radiation-associated dysphagia (RAD) in a new patient receiving intensity modulated radiation therapy (IMRT). Material and methods All patients were treated using curative-intent IMRT. Anatomical features were extracted from contrast-enhanced tomography scans acquired pre-treatment. Patient similarity was computed using a topological similarity measure, which allowed for the prediction of normal tissues' mean doses. We performed feature selection and clustering, and used the resulting groups of patients to forecast RAD. We used Logistic Regression (LG) cross-validation to assess the potential toxicity risk of these groupings. Results Out of 200 patients, 34 patients were recorded as having RAD. Patient clusters were significantly correlated with RAD (p < .0001). The area under the receiver-operator curve (AUC) using pre-established, baseline features gave a predictive accuracy of 0.79, while the addition of our cluster labels improved accuracy to 0.84. Conclusion Our results show that spatial information available pre-treatment can be used to robustly identify groups of RAD high-risk patients. We identify feature sets that considerably improve toxicity risk prediction beyond what is possible using baseline features. Our results also suggest that similarity-based predicted mean doses to organs can be used as valid predictors of risk to organs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小刚采纳,获得10
3秒前
edtaa完成签到 ,获得积分10
9秒前
仲夏夜发布了新的文献求助10
10秒前
yaya0310完成签到,获得积分10
12秒前
tataq完成签到,获得积分10
12秒前
神勇的蜜蜂完成签到,获得积分10
13秒前
小可爱完成签到 ,获得积分10
14秒前
16秒前
精明寒松完成签到 ,获得积分10
18秒前
独特的凝云完成签到 ,获得积分10
21秒前
23秒前
Yanki完成签到,获得积分10
26秒前
蔡翌文完成签到 ,获得积分10
27秒前
28秒前
小张不慌完成签到,获得积分10
32秒前
32秒前
Sissimummy完成签到 ,获得积分10
32秒前
kryzhang发布了新的文献求助10
33秒前
ccc完成签到 ,获得积分10
34秒前
Ternura发布了新的文献求助10
36秒前
llls完成签到 ,获得积分10
38秒前
Chloe完成签到,获得积分10
41秒前
kryzhang完成签到,获得积分10
41秒前
42秒前
42秒前
42秒前
Ternura完成签到,获得积分10
43秒前
43秒前
45秒前
科研通AI2S应助gong采纳,获得10
46秒前
小羊发布了新的文献求助10
47秒前
cara应助wjj采纳,获得20
48秒前
大模型应助派大星采纳,获得10
48秒前
柒柒完成签到,获得积分10
48秒前
48秒前
49秒前
火星上的灵竹完成签到,获得积分10
52秒前
大饼子圆完成签到 ,获得积分10
52秒前
53秒前
54秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269252
求助须知:如何正确求助?哪些是违规求助? 2908788
关于积分的说明 8346793
捐赠科研通 2578949
什么是DOI,文献DOI怎么找? 1402530
科研通“疑难数据库(出版商)”最低求助积分说明 655470
邀请新用户注册赠送积分活动 634632