Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis

元回归 置信区间 医学 随机效应模型 出版偏见 样本量测定 平均差 简单(哲学)
作者
Chittaranjan Andrade
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:81 (5) 被引量:195
标识
DOI:10.4088/jcp.20f13681
摘要

In randomized controlled trials (RCTs), endpoint scores, or change scores representing the difference between endpoint and baseline, are values of interest. These values are compared between experimental and control groups, yielding a mean difference between the experimental and control groups for each outcome that is compared. When the mean difference values for a specified outcome, obtained from different RCTs, are all in the same unit (such as when they were all obtained using the same rating instrument), they can be pooled in meta-analysis to yield a summary estimate that is also known as a mean difference (MD). Because pooling of the mean difference from individual RCTs is done after weighting the values for precision, this pooled MD is also known as the weighted mean difference (WMD). Sometimes, different studies use different rating instruments to measure the same outcome; that is, the units of measurement for the outcome of interest are different across studies. In such cases, the mean differences from the different RCTs cannot be pooled. However, these mean differences can be divided by their respective standard deviations (SDs) to yield a statistic known as the standardized mean difference (SMD). The SD that is used as the divisor is usually either the pooled SD or the SD of the control group; in the former instance, the SMD is known as Cohen's d, and in the latter instance, as Glass' delta. SMDs of 0.2, 0.5, and 0.8 are considered small, medium, and large, respectively. SMDs can be pooled in meta-analysis because the unit is uniform across studies. This article presents and explains the different terms and concepts with the help of simple examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁小兔完成签到,获得积分10
刚刚
上官若男应助安静的瑾瑜采纳,获得10
刚刚
兔兔sci发布了新的文献求助30
2秒前
3秒前
4秒前
5秒前
云阳发布了新的文献求助20
5秒前
所所应助zzzzzh采纳,获得10
5秒前
6秒前
三月聚粮应助hah采纳,获得30
6秒前
7秒前
8秒前
9秒前
10秒前
Llt完成签到,获得积分10
11秒前
流星雨发布了新的文献求助10
11秒前
尹雪儿发布了新的文献求助10
12秒前
12秒前
JiangHan发布了新的文献求助10
14秒前
14秒前
脑洞疼应助健忘小霜采纳,获得10
16秒前
阿北发布了新的文献求助10
16秒前
16秒前
风韵犹存母猪完成签到 ,获得积分10
17秒前
17秒前
17秒前
wanci应助无语大王采纳,获得10
19秒前
19秒前
zzzzzh发布了新的文献求助10
19秒前
Ava应助兔兔sci采纳,获得10
20秒前
整齐的塑料完成签到,获得积分10
20秒前
21秒前
飘逸的擎发布了新的文献求助10
21秒前
21秒前
23秒前
23秒前
ipeakkka发布了新的文献求助10
24秒前
24秒前
25秒前
SciGPT应助Ploaris采纳,获得10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265050
求助须知:如何正确求助?哪些是违规求助? 2904965
关于积分的说明 8332289
捐赠科研通 2575415
什么是DOI,文献DOI怎么找? 1399750
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633361