MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging

医学 磁共振成像 脑转移 放射外科 核医学 分割 放射科 转移 放射治疗 癌症 人工智能 内科学 计算机科学
作者
Zijian Zhou,Jeremiah Sanders,Jason M. Johnson,Maria Gule-Monroe,Melissa Chen,Tina M. Briere,Yan Wang,Jong Bum Son,Mark D. Pagel,Jingfei Ma,Jing Li
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:153: 189-196 被引量:34
标识
DOI:10.1016/j.radonc.2020.09.016
摘要

Abstract

Purpose

Brain metastases are manually contoured during stereotactic radiosurgery (SRS) treatment planning, which is time-consuming, potentially challenging, and laborious. The purpose of this study was to develop and investigate a 2-stage deep learning (DL) approach (MetNet) for brain metastasis segmentation in pre-treatment magnetic resonance imaging (MRI).

Materials and methods

We retrospectively analyzed postcontrast 3D T1-weighted spoiled gradient echo MRIs from 934 patients who underwent SRS between August 2009 and August 2018. Neuroradiologists manually identified brain metastases in the MRIs. The treating radiation oncologist or physicist contoured the brain metastases. We constructed a 2-stage DL ensemble consisting of detection and segmentation models to segment the brain metastases on the MRIs. We evaluated the performance of MetNet by computing sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC) with respect to metastasis size, as well as free-response receiver operating characteristics.

Results

The 934 patients (mean [±standard deviation] age 59 ± 13 years, 474 women) were randomly split into 80% training and 20% testing groups (748:186). For patients with metastases 1–52 mm (n = 766), 648 (85%) were detected and segmented with a mean segmentation DSC of 81% ± 15%. Patient-averaged sensitivity was 88% ± 19%, PPV was 58% ± 25%, and DSC was 85% ± 13% with 3 ± 3 false positives (FPs) per patient. When considering only metastases ≥6 mm, patient-averaged sensitivity was 99% ± 5%, PPV was 67% ± 28%, and DSC was 87% ± 13% with 1 ± 2 FPs per patient.

Conclusion

MetNet can segment brain metastases across a broad range of metastasis sizes with high sensitivity, low FPs, and high segmentation accuracy in postcontrast T1-weighted MRI, potentially aiding treatment planning for SRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车雁开发布了新的文献求助10
1秒前
Ava应助xiongdi521采纳,获得10
2秒前
4秒前
33完成签到 ,获得积分10
4秒前
肖肖肖发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
千阳发布了新的文献求助10
7秒前
Upupupiu关注了科研通微信公众号
9秒前
10秒前
lalala完成签到,获得积分20
10秒前
小孙发布了新的文献求助10
10秒前
111完成签到,获得积分10
11秒前
无机盐完成签到,获得积分10
13秒前
Sun完成签到,获得积分10
13秒前
夏筱发布了新的文献求助10
14秒前
花花发布了新的文献求助10
14秒前
cyl应助spring2025采纳,获得10
14秒前
lili发布了新的文献求助10
16秒前
17秒前
18秒前
九尾狐发布了新的文献求助10
18秒前
19秒前
19秒前
情怀应助凡凡采纳,获得30
20秒前
20秒前
奔跑发布了新的文献求助10
20秒前
21秒前
22秒前
ww完成签到,获得积分10
24秒前
李昕123发布了新的文献求助10
24秒前
Valky发布了新的文献求助10
25秒前
隐形静芙发布了新的文献求助10
26秒前
甜蜜的阳光完成签到 ,获得积分10
28秒前
echo发布了新的文献求助10
29秒前
芝麻糊应助奔跑采纳,获得10
30秒前
研友_VZG7GZ应助ww采纳,获得10
30秒前
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700