Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery

全息术 人工智能 光学(聚焦) 计算机科学 样品(材料) 卷积神经网络 景深 计算机视觉 深度学习 迭代重建 对象(语法) 领域(数学) 相(物质) 点(几何) 数字全息术 体积热力学 图像(数学) 光学 数学 物理 热力学 量子力学 纯数学 几何学
作者
Yichen Wu,Yair Rivenson,Yibo Zhang,Zhensong Wei,Harun Günaydın,Xing Lin,Aydogan Özcan
出处
期刊:Optica [Optica Publishing Group]
卷期号:5 (6): 704-704 被引量:294
标识
DOI:10.1364/optica.5.000704
摘要

Holography encodes the three dimensional (3D) information of a sample in the form of an intensity-only recording. However, to decode the original sample image from its hologram(s), auto-focusing and phase-recovery are needed, which are in general cumbersome and time-consuming to digitally perform. Here we demonstrate a convolutional neural network (CNN) based approach that simultaneously performs auto-focusing and phase-recovery to significantly extend the depth-of-field (DOF) in holographic image reconstruction. For this, a CNN is trained by using pairs of randomly de-focused back-propagated holograms and their corresponding in-focus phase-recovered images. After this training phase, the CNN takes a single back-propagated hologram of a 3D sample as input to rapidly achieve phase-recovery and reconstruct an in focus image of the sample over a significantly extended DOF. This deep learning based DOF extension method is non-iterative, and significantly improves the algorithm time-complexity of holographic image reconstruction from O(nm) to O(1), where n refers to the number of individual object points or particles within the sample volume, and m represents the focusing search space within which each object point or particle needs to be individually focused. These results highlight some of the unique opportunities created by data-enabled statistical image reconstruction methods powered by machine learning, and we believe that the presented approach can be broadly applicable to computationally extend the DOF of other imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优雅柏柳发布了新的文献求助10
1秒前
zz发布了新的文献求助10
2秒前
Lucas应助活力契采纳,获得10
2秒前
Li发布了新的文献求助10
3秒前
4秒前
希望天下0贩的0应助江蹇采纳,获得10
5秒前
机灵柚子发布了新的文献求助10
5秒前
6秒前
慕苡发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
11秒前
ekko发布了新的文献求助10
12秒前
根瘤君发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
DD完成签到,获得积分10
14秒前
释怀发布了新的文献求助10
16秒前
活力契发布了新的文献求助10
16秒前
fu发布了新的文献求助10
16秒前
pingping发布了新的文献求助10
17秒前
穆承羲完成签到 ,获得积分10
18秒前
18秒前
confident完成签到 ,获得积分10
18秒前
思源应助安静海露采纳,获得10
19秒前
健忘的雨安完成签到,获得积分10
19秒前
慕苡完成签到,获得积分10
20秒前
伯赏人杰发布了新的文献求助10
23秒前
猪猪hero应助对对碰采纳,获得10
24秒前
小马甲应助胖虎不胖采纳,获得10
25秒前
25秒前
根瘤君完成签到,获得积分10
26秒前
sunglow11完成签到,获得积分0
27秒前
斯文败类应助活力契采纳,获得10
28秒前
29秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021