Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery

全息术 人工智能 光学(聚焦) 计算机科学 样品(材料) 卷积神经网络 景深 计算机视觉 深度学习 迭代重建 对象(语法) 领域(数学) 相(物质) 点(几何) 数字全息术 体积热力学 图像(数学) 光学 数学 物理 热力学 量子力学 纯数学 几何学
作者
Yichen Wu,Yair Rivenson,Yibo Zhang,Zhensong Wei,Harun Günaydın,Xing Lin,Aydogan Özcan
出处
期刊:Optica [The Optical Society]
卷期号:5 (6): 704-704 被引量:294
标识
DOI:10.1364/optica.5.000704
摘要

Holography encodes the three dimensional (3D) information of a sample in the form of an intensity-only recording. However, to decode the original sample image from its hologram(s), auto-focusing and phase-recovery are needed, which are in general cumbersome and time-consuming to digitally perform. Here we demonstrate a convolutional neural network (CNN) based approach that simultaneously performs auto-focusing and phase-recovery to significantly extend the depth-of-field (DOF) in holographic image reconstruction. For this, a CNN is trained by using pairs of randomly de-focused back-propagated holograms and their corresponding in-focus phase-recovered images. After this training phase, the CNN takes a single back-propagated hologram of a 3D sample as input to rapidly achieve phase-recovery and reconstruct an in focus image of the sample over a significantly extended DOF. This deep learning based DOF extension method is non-iterative, and significantly improves the algorithm time-complexity of holographic image reconstruction from O(nm) to O(1), where n refers to the number of individual object points or particles within the sample volume, and m represents the focusing search space within which each object point or particle needs to be individually focused. These results highlight some of the unique opportunities created by data-enabled statistical image reconstruction methods powered by machine learning, and we believe that the presented approach can be broadly applicable to computationally extend the DOF of other imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sutharsons应助科研通管家采纳,获得200
1秒前
打打应助科研通管家采纳,获得10
1秒前
axin应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
lu应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
研友_MLJldZ发布了新的文献求助10
2秒前
wys完成签到 ,获得积分10
3秒前
4秒前
michaelvin完成签到,获得积分10
4秒前
学术大白完成签到 ,获得积分10
7秒前
7秒前
SYT完成签到,获得积分10
8秒前
9秒前
11秒前
11秒前
11秒前
12秒前
12秒前
魏伯安发布了新的文献求助10
12秒前
12秒前
zhouleiwang完成签到,获得积分10
13秒前
李爱国应助aiming采纳,获得10
14秒前
无奈傲菡完成签到,获得积分10
15秒前
TT发布了新的文献求助10
15秒前
啦啦啦发布了新的文献求助10
16秒前
sun发布了新的文献求助10
17秒前
荣荣完成签到,获得积分10
17秒前
18秒前
小安完成签到,获得积分10
19秒前
Spencer完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849