Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LiuJ发布了新的文献求助10
3秒前
3秒前
cxy完成签到,获得积分10
3秒前
4秒前
任性的小丸子完成签到,获得积分10
4秒前
又欠发布了新的文献求助10
5秒前
AdnanKhan发布了新的文献求助10
5秒前
可耐的远侵完成签到 ,获得积分10
5秒前
liangm7完成签到,获得积分10
5秒前
5秒前
5秒前
侯笑笑发布了新的文献求助10
6秒前
黄浦江完成签到,获得积分10
6秒前
小常完成签到 ,获得积分10
6秒前
危机的盼晴完成签到,获得积分10
8秒前
烟花应助钟情紫色短裤采纳,获得10
8秒前
8秒前
8秒前
8秒前
希望天下0贩的0应助12345采纳,获得10
10秒前
10秒前
keyanzhang完成签到,获得积分10
11秒前
11秒前
风趣之云完成签到 ,获得积分10
11秒前
wanghh发布了新的文献求助10
11秒前
Duomo应助siri1313采纳,获得20
11秒前
11秒前
12秒前
酒酒完成签到,获得积分10
12秒前
13秒前
jingxuan发布了新的文献求助10
14秒前
14秒前
慕青应助又欠采纳,获得10
14秒前
奕二叁发布了新的文献求助10
14秒前
研友_VZG7GZ应助詹娜娜采纳,获得10
14秒前
14秒前
云柔竹劲完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344557
求助须知:如何正确求助?哪些是违规求助? 4479749
关于积分的说明 13944365
捐赠科研通 4376951
什么是DOI,文献DOI怎么找? 2404998
邀请新用户注册赠送积分活动 1397528
关于科研通互助平台的介绍 1369880