亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助欢呼的瑶采纳,获得10
1秒前
姜颀关注了科研通微信公众号
1秒前
2秒前
VWVWV完成签到 ,获得积分10
7秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
ilk666完成签到,获得积分10
10秒前
16秒前
科研通AI2S应助George采纳,获得10
20秒前
欣慰外套完成签到 ,获得积分10
21秒前
文艺怀蝶发布了新的文献求助10
21秒前
Swj完成签到,获得积分10
22秒前
22秒前
lin123完成签到 ,获得积分10
23秒前
姜颀发布了新的文献求助10
25秒前
26秒前
orixero应助Swj采纳,获得10
28秒前
dddddd发布了新的文献求助10
29秒前
ss发布了新的文献求助10
41秒前
小小怪发布了新的文献求助10
47秒前
包容仙人掌完成签到,获得积分10
50秒前
53秒前
xuke完成签到 ,获得积分10
54秒前
56秒前
我爆冲完成签到,获得积分10
57秒前
拾光完成签到,获得积分10
58秒前
我爆冲发布了新的文献求助10
1分钟前
new1完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Lusteri完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Echo发布了新的文献求助10
1分钟前
姜颀发布了新的文献求助10
1分钟前
ccc冲冲冲发布了新的文献求助10
1分钟前
chen完成签到 ,获得积分10
1分钟前
惷511完成签到,获得积分20
1分钟前
WilsonT完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595654
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817961
捐赠科研通 4651226
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469754