已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dove完成签到 ,获得积分10
4秒前
解觅荷发布了新的文献求助10
4秒前
jiwoong发布了新的文献求助10
6秒前
7秒前
张泽林发布了新的文献求助10
10秒前
解觅荷完成签到,获得积分10
14秒前
归海梦岚完成签到,获得积分0
15秒前
祈祈完成签到 ,获得积分10
16秒前
18秒前
20秒前
八个脑袋发布了新的文献求助10
22秒前
23秒前
li完成签到 ,获得积分10
24秒前
24秒前
li发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
一一发布了新的文献求助10
29秒前
大模型应助xpy0227采纳,获得10
30秒前
Z_jx完成签到,获得积分10
30秒前
Enso完成签到 ,获得积分10
31秒前
爪人猫发布了新的文献求助10
31秒前
燕儿发布了新的文献求助10
32秒前
梦清雅发布了新的文献求助10
32秒前
冰河蓝狮完成签到 ,获得积分10
32秒前
余子健发布了新的文献求助10
32秒前
斯文败类应助li采纳,获得10
34秒前
田様应助一一采纳,获得10
35秒前
挽风完成签到 ,获得积分10
35秒前
suyu完成签到 ,获得积分10
35秒前
38秒前
Takahara2000完成签到,获得积分10
38秒前
40秒前
夜夏完成签到,获得积分10
41秒前
无语的唯雪完成签到,获得积分10
42秒前
喻贡金给喻贡金的求助进行了留言
43秒前
xpy0227发布了新的文献求助10
43秒前
赘婿应助科研通管家采纳,获得10
45秒前
天天快乐应助科研通管家采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567958
求助须知:如何正确求助?哪些是违规求助? 4652476
关于积分的说明 14701138
捐赠科研通 4594306
什么是DOI,文献DOI怎么找? 2520819
邀请新用户注册赠送积分活动 1492790
关于科研通互助平台的介绍 1463645