Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
然来溪完成签到 ,获得积分10
1秒前
5秒前
qianci2009完成签到,获得积分0
6秒前
sadh2完成签到 ,获得积分10
6秒前
xun完成签到,获得积分20
6秒前
6秒前
9秒前
崔灿完成签到 ,获得积分10
9秒前
含蓄的魔镜完成签到 ,获得积分10
10秒前
hhh2018687完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
luffy完成签到 ,获得积分10
14秒前
jjjjjj发布了新的文献求助30
14秒前
federish完成签到 ,获得积分10
19秒前
健脊护柱完成签到 ,获得积分10
22秒前
蓝莓芝士完成签到 ,获得积分10
23秒前
Yuki完成签到 ,获得积分10
25秒前
grace完成签到 ,获得积分10
25秒前
Skyllne完成签到 ,获得积分10
26秒前
LONG完成签到 ,获得积分10
27秒前
LJ_2完成签到 ,获得积分10
28秒前
xue完成签到 ,获得积分10
29秒前
wangsiyuan发布了新的文献求助10
30秒前
jjjjjj完成签到,获得积分10
31秒前
嗡嗡嗡完成签到 ,获得积分10
32秒前
白华苍松发布了新的文献求助20
33秒前
观妙散人完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
巫巫巫巫巫完成签到 ,获得积分0
41秒前
害怕的小刺猬完成签到 ,获得积分10
41秒前
殷勤的凝海完成签到 ,获得积分10
43秒前
CipherSage应助白华苍松采纳,获得10
43秒前
mmiww完成签到,获得积分10
51秒前
53秒前
冷静冰萍完成签到 ,获得积分10
54秒前
kelien1205完成签到 ,获得积分10
55秒前
lkgxwpf发布了新的文献求助10
57秒前
laber完成签到,获得积分0
1分钟前
启程完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516426
求助须知:如何正确求助?哪些是违规求助? 4609379
关于积分的说明 14514873
捐赠科研通 4546050
什么是DOI,文献DOI怎么找? 2491063
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444767