已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助高铭泽采纳,获得10
1秒前
丘比特应助高铭泽采纳,获得10
1秒前
大模型应助高铭泽采纳,获得10
1秒前
汉堡包应助高铭泽采纳,获得10
1秒前
小马甲应助高铭泽采纳,获得10
1秒前
欧皇完成签到,获得积分20
3秒前
欧皇发布了新的文献求助50
4秒前
Lucas应助哆啦小奶龙采纳,获得10
5秒前
boldhammer完成签到 ,获得积分10
5秒前
漓一完成签到 ,获得积分10
7秒前
8秒前
9秒前
jingutaimi完成签到,获得积分10
10秒前
Caer完成签到,获得积分10
12秒前
12秒前
12秒前
机智灯泡完成签到 ,获得积分10
14秒前
15秒前
山复尔尔完成签到 ,获得积分10
15秒前
菲菲完成签到 ,获得积分10
16秒前
精明冰夏完成签到,获得积分10
16秒前
风不定发布了新的文献求助30
17秒前
李程阳完成签到 ,获得积分10
18秒前
小机灵发布了新的文献求助10
19秒前
twinkle完成签到 ,获得积分10
21秒前
小吴完成签到,获得积分10
22秒前
选兵完成签到,获得积分10
23秒前
伶俐的金连完成签到 ,获得积分10
23秒前
pass完成签到 ,获得积分10
23秒前
曲淳完成签到,获得积分10
24秒前
24秒前
哆啦小奶龙完成签到,获得积分10
25秒前
25秒前
爱听歌电灯胆完成签到,获得积分10
25秒前
忧伤的映阳完成签到 ,获得积分10
25秒前
Lucas应助吃死你啦啦采纳,获得10
28秒前
点点点完成签到 ,获得积分10
32秒前
清秀小霸王完成签到,获得积分10
32秒前
33秒前
丁昂霄完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504