Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile发布了新的文献求助10
刚刚
辛夷完成签到 ,获得积分10
刚刚
xjl发布了新的文献求助10
1秒前
zcl应助美味猫堡采纳,获得30
1秒前
WZQ发布了新的文献求助10
1秒前
chrysan发布了新的文献求助30
1秒前
镯镯完成签到 ,获得积分10
2秒前
SHENYanpeng发布了新的文献求助10
2秒前
奋斗慕凝完成签到 ,获得积分10
2秒前
WXG发布了新的文献求助10
2秒前
XiaoMaomi完成签到,获得积分10
2秒前
songfeifeng发布了新的文献求助10
3秒前
皖没有晚安完成签到,获得积分10
3秒前
lcy发布了新的文献求助10
3秒前
3秒前
ssssbbbb发布了新的文献求助10
4秒前
Lumosii完成签到,获得积分10
4秒前
dian完成签到 ,获得积分10
4秒前
4秒前
超级柜子发布了新的文献求助10
5秒前
lhaoran完成签到,获得积分10
5秒前
研友_VZG7GZ应助周晓采纳,获得10
6秒前
6秒前
大个应助soki采纳,获得10
6秒前
7秒前
7秒前
7秒前
陈叉叉完成签到 ,获得积分10
8秒前
我是老大应助张天采纳,获得10
8秒前
Jasper应助huifang采纳,获得10
10秒前
10秒前
爆米花应助leo采纳,获得10
10秒前
华仔应助霜穿积晴采纳,获得10
10秒前
10秒前
Michael.Hu发布了新的文献求助10
10秒前
书桓发布了新的文献求助10
11秒前
18859805972完成签到 ,获得积分10
11秒前
11秒前
tim发布了新的文献求助10
11秒前
王铭轩完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098501
求助须知:如何正确求助?哪些是违规求助? 4310677
关于积分的说明 13431614
捐赠科研通 4137982
什么是DOI,文献DOI怎么找? 2266990
邀请新用户注册赠送积分活动 1270081
关于科研通互助平台的介绍 1206363