Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天真的万声完成签到,获得积分10
1秒前
1秒前
卷心菜发布了新的文献求助10
2秒前
洛洛完成签到,获得积分10
2秒前
青易完成签到,获得积分10
3秒前
Orange应助机灵猕猴桃采纳,获得10
4秒前
wz发布了新的文献求助30
4秒前
Rason发布了新的文献求助10
5秒前
POKKKK完成签到,获得积分10
5秒前
6秒前
6秒前
why完成签到,获得积分10
6秒前
无花果应助经友菱采纳,获得10
7秒前
派对动物完成签到,获得积分10
7秒前
HHTTY完成签到 ,获得积分10
7秒前
无心的土豆完成签到 ,获得积分10
8秒前
张磊完成签到,获得积分10
9秒前
Miracle发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
鳗鱼雪莲完成签到,获得积分10
11秒前
大力xinxin完成签到,获得积分20
11秒前
满意发布了新的文献求助10
11秒前
nater4ver完成签到,获得积分10
11秒前
NexusExplorer应助成就芒果tv采纳,获得10
11秒前
Lucas应助yys采纳,获得10
13秒前
Rason完成签到,获得积分10
13秒前
我是老大应助强健的冰棍采纳,获得10
13秒前
nater3ver完成签到,获得积分10
15秒前
StevenZhao发布了新的文献求助10
16秒前
nanlinhua发布了新的文献求助10
16秒前
18秒前
18秒前
nater2ver完成签到,获得积分10
18秒前
19秒前
19秒前
所所应助xbchen采纳,获得10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458