Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Oatmeal5888完成签到,获得积分10
刚刚
乐一完成签到,获得积分20
刚刚
zqz完成签到,获得积分10
刚刚
刚刚
1秒前
小二郎应助淡定宛丝采纳,获得10
1秒前
1秒前
虚心惜筠发布了新的文献求助10
1秒前
Dean应助小猪猪采纳,获得50
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
正直映萱完成签到,获得积分10
3秒前
塘泥J完成签到,获得积分10
3秒前
呆萌的寄云完成签到,获得积分10
3秒前
4秒前
wikn完成签到,获得积分10
5秒前
5秒前
5秒前
科研通AI5应助勤奋的雪曼采纳,获得10
6秒前
cw关闭了cw文献求助
6秒前
6秒前
7秒前
高尚完成签到,获得积分10
7秒前
seesun发布了新的文献求助10
7秒前
8秒前
莫相逢完成签到,获得积分10
8秒前
leaolf应助cff采纳,获得10
9秒前
9秒前
赘婿应助青花采纳,获得10
10秒前
复杂函完成签到,获得积分10
10秒前
zhangxueqing完成签到,获得积分10
10秒前
陈小虎发布了新的文献求助10
10秒前
木木完成签到,获得积分10
11秒前
虚心惜筠完成签到,获得积分10
11秒前
微笑亿先发布了新的文献求助10
11秒前
嘻嘻嘻发布了新的文献求助30
12秒前
黎落发布了新的文献求助20
13秒前
小研发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343