清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-task Self-Supervised Learning for Human Activity Detection

计算机科学 人工智能 杠杆(统计) 特征学习 学习迁移 机器学习 卷积神经网络 监督学习 深度学习 任务(项目管理) 标记数据 二元分类 无监督学习 半监督学习 模式识别(心理学) 人工神经网络 支持向量机 经济 管理
作者
Aaqib Saeed,Tanir Ozcelebi,Johan J. Lukkien
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:3 (2): 1-30 被引量:128
标识
DOI:10.1145/3328932
摘要

Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两个榴莲完成签到,获得积分0
7秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
岚月发布了新的文献求助30
1分钟前
岚月完成签到,获得积分10
1分钟前
糊涂的青烟完成签到 ,获得积分10
2分钟前
激动的似狮完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
感动初蓝完成签到 ,获得积分10
4分钟前
tt完成签到,获得积分10
4分钟前
大鸟依人发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
orixero应助大鸟依人采纳,获得10
6分钟前
cao_bq完成签到,获得积分10
6分钟前
积雪完成签到 ,获得积分10
6分钟前
yang完成签到 ,获得积分10
6分钟前
cao_bq发布了新的文献求助10
7分钟前
7分钟前
一道光发布了新的文献求助30
7分钟前
JamesPei应助一道光采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
灵巧的代芙完成签到 ,获得积分10
8分钟前
科研通AI6应助LinWu采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
10分钟前
10分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
充电宝应助乐正文涛采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646648
关于积分的说明 14678717
捐赠科研通 4587987
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490543
关于科研通互助平台的介绍 1461566