Multi-objective optimization of liquid-liquid mixing in helical pipes using Genetic Algorithms coupled with Computational Fluid Dynamics

压力降 雷诺数 机械 混合(物理) 多目标优化 还原(数学) 计算流体力学 下降(电信) 塞流 数学 材料科学 湍流 几何学 数学优化 物理 机械工程 工程类 量子力学
作者
Michael Mansour,Katharina Zähringer,K.D.P. Nigam,Gábor Janiga
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:391: 123570-123570 被引量:21
标识
DOI:10.1016/j.cej.2019.123570
摘要

The identification of the best possible helical pipe geometry for optimal mixing is challenging since the two central objectives (minimizing pressure drop while maximizing mixing efficiency) cannot be reached simultaneously; they lead to concurrent target functions. The present study identifies optimal configurations using multi-objective optimization for the flow of two miscible liquids in helical pipes. A flow optimization library (OPAL++) was used to automatically control the numerical simulations. The objective is to optimize the helical pipe dimensions, maximizing mixing efficiency (Mc) and simultaneously minimizing the pressure drop per unit length (ΔP/L). The pipe diameter (d), coil diameter (D) and pitch (P), were widely varied within 4–50 mm, 10–500 mm, and 5–100 mm, respectively. Additionally, the Reynolds number (Re) was varied within 20–60, covering the optimal range for liquid mixing in helical pipes. After performing a total of 1226 simulations over 30 optimization generations, a Pareto front was obtained, containing all concurrent optimal solutions. The results revealed that the reduction of any of the geometrical parameters can generally improve mixing. The change of D or P slightly affects the pressure drop, while the reduction of d increases the pressure drop significantly. All configurations in the Pareto front show a strong linear correlation between d and P, showing that P should be kept as small as possible. A globally optimal individual is suggested based on minimizing the Euclidean distance to the extreme point of the objective functions (Mc=1,ΔP/L=0). Finally, correlations are proposed for predicting the pressure drop and the mixing coefficient. The resulting optimal geometry and its associated process conditions are recommended to ensure excellent mixing at minimum pumping power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四月一日完成签到,获得积分10
2秒前
3秒前
科研Mayormm完成签到 ,获得积分10
3秒前
liyiren完成签到,获得积分10
3秒前
草上飞完成签到 ,获得积分10
5秒前
6秒前
foreve1完成签到,获得积分10
7秒前
scinature完成签到,获得积分10
7秒前
Dsivan发布了新的文献求助10
8秒前
8秒前
yirenli完成签到,获得积分10
10秒前
didoo完成签到,获得积分10
12秒前
maxyer完成签到,获得积分10
12秒前
wxnice完成签到,获得积分10
12秒前
Owen应助仁爱的雁芙采纳,获得10
13秒前
SunJc发布了新的文献求助10
13秒前
旺阿旺完成签到,获得积分10
14秒前
spp完成签到 ,获得积分10
14秒前
犹豫嚣完成签到,获得积分10
15秒前
小雨完成签到,获得积分10
16秒前
友好傲白完成签到,获得积分10
17秒前
研友_Z60ObL完成签到,获得积分10
17秒前
qqq完成签到 ,获得积分10
18秒前
纯真的雁山完成签到,获得积分10
21秒前
Obvious完成签到,获得积分10
21秒前
走四方应助四月一日采纳,获得10
21秒前
silin完成签到,获得积分10
22秒前
23秒前
balabala完成签到 ,获得积分10
24秒前
laola完成签到,获得积分10
24秒前
臭皮完成签到,获得积分10
25秒前
奥特斌完成签到 ,获得积分10
25秒前
26秒前
DZQ完成签到,获得积分10
26秒前
小美酱完成签到 ,获得积分0
26秒前
LILI完成签到,获得积分10
26秒前
忧虑的羊完成签到 ,获得积分20
26秒前
ZCX完成签到,获得积分10
27秒前
伯赏凝旋完成签到 ,获得积分10
27秒前
wxt完成签到 ,获得积分10
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818739
关于积分的说明 7922236
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320377
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443