Multi-objective optimization of liquid-liquid mixing in helical pipes using Genetic Algorithms coupled with Computational Fluid Dynamics

压力降 雷诺数 机械 混合(物理) 多目标优化 还原(数学) 计算流体力学 下降(电信) 塞流 数学 材料科学 湍流 几何学 数学优化 物理 机械工程 工程类 量子力学
作者
Michael Mansour,Katharina Zähringer,K.D.P. Nigam,Gábor Janiga
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:391: 123570-123570 被引量:21
标识
DOI:10.1016/j.cej.2019.123570
摘要

The identification of the best possible helical pipe geometry for optimal mixing is challenging since the two central objectives (minimizing pressure drop while maximizing mixing efficiency) cannot be reached simultaneously; they lead to concurrent target functions. The present study identifies optimal configurations using multi-objective optimization for the flow of two miscible liquids in helical pipes. A flow optimization library (OPAL++) was used to automatically control the numerical simulations. The objective is to optimize the helical pipe dimensions, maximizing mixing efficiency (Mc) and simultaneously minimizing the pressure drop per unit length (ΔP/L). The pipe diameter (d), coil diameter (D) and pitch (P), were widely varied within 4–50 mm, 10–500 mm, and 5–100 mm, respectively. Additionally, the Reynolds number (Re) was varied within 20–60, covering the optimal range for liquid mixing in helical pipes. After performing a total of 1226 simulations over 30 optimization generations, a Pareto front was obtained, containing all concurrent optimal solutions. The results revealed that the reduction of any of the geometrical parameters can generally improve mixing. The change of D or P slightly affects the pressure drop, while the reduction of d increases the pressure drop significantly. All configurations in the Pareto front show a strong linear correlation between d and P, showing that P should be kept as small as possible. A globally optimal individual is suggested based on minimizing the Euclidean distance to the extreme point of the objective functions (Mc=1,ΔP/L=0). Finally, correlations are proposed for predicting the pressure drop and the mixing coefficient. The resulting optimal geometry and its associated process conditions are recommended to ensure excellent mixing at minimum pumping power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英姑应助学渣采纳,获得10
刚刚
华仔应助jt采纳,获得20
1秒前
充电宝应助WYS513采纳,获得10
1秒前
nanfeng发布了新的文献求助10
2秒前
2秒前
abc123完成签到,获得积分10
3秒前
冯宝宝完成签到,获得积分10
3秒前
sun发布了新的文献求助10
3秒前
小马甲应助如意的冰双采纳,获得10
4秒前
Anaero发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
南宫映榕发布了新的文献求助10
6秒前
xiaofan1991完成签到,获得积分10
7秒前
爆米花应助优美熠悦采纳,获得10
10秒前
斯文败类应助蜗牛采纳,获得10
10秒前
Anaero完成签到,获得积分10
11秒前
zhuxuanfeng完成签到,获得积分10
12秒前
sun完成签到,获得积分10
13秒前
13秒前
小马甲应助我是大皇帝采纳,获得10
14秒前
yanying_shc完成签到,获得积分10
14秒前
vision0000完成签到,获得积分10
14秒前
SYLH应助小瓶采纳,获得10
14秒前
14秒前
15秒前
CodeCraft应助slin_sjtu采纳,获得10
15秒前
猪猪hero应助22采纳,获得10
16秒前
Lucas应助快乐保温杯采纳,获得10
17秒前
17秒前
俏皮白云完成签到 ,获得积分10
17秒前
18秒前
18秒前
jack应助nanfeng采纳,获得10
19秒前
WYS513发布了新的文献求助10
19秒前
19秒前
mo完成签到,获得积分10
19秒前
19秒前
乐乐应助悠着点儿卷吧采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952627
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090192
捐赠科研通 3228661
什么是DOI,文献DOI怎么找? 1785008
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344