Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration

偏最小二乘回归 表面增强拉曼光谱 化学计量学 拉曼光谱 咖啡因 均方根 化学 校准 分析化学(期刊) 均方误差 相关系数 胶体金 标准差 光谱学 生物系统 材料科学 色谱法 纳米颗粒 拉曼散射 数学 纳米技术 光学 统计 医学 生物 量子力学 内分泌学 工程类 物理 电气工程
作者
Muhammad Zareef,Md Mehedi Hassan,Muhammad Arslan,Waqas Ahmad,Shujat Ali,Qin Ouyang,Huanhuan Li,Xiangyang Wu,Quansheng Chen
出处
期刊:Microchemical Journal [Elsevier]
卷期号:159: 105431-105431 被引量:27
标识
DOI:10.1016/j.microc.2020.105431
摘要

This study was focused on the quantitation of caffeine in black tea by surface-enhanced Raman spectroscopy coupled with gold nanoparticles. Caffeine has its own importance in tea due to its significant role against cardiovascular diseases and many other benefits. Caffeine was predicted for the first time as low cost and rapid by surface-enhanced Raman spectroscopy (SERS) coupled chemometrics in black tea. Gold nanoparticles (AuNPs) were synthesized successfully with high enhancement factors as SERS substrate used for SERS detection coupled partial least squares (PLS) algorithms. Caffeine exhibited several SERS characteristic peaks after adsorption on AuNPs owing to electromagnetic enhancement while excited by laser excitation. Quantification of caffeine in black tea was predicted using four build models, PLS, synergy interval-PLS (Si-PLS), genetic algorithm-PLS (GA-PLS), and Si-GA-PLS on preprocessed spectral data by standard normal variate (SNV). The better results were noted by using Si-GA-PLS while latent variables, (LVs) was 5, the correlation coefficient of calibration (RC) = 0.9705 where root mean square error of cross validation (RMSECV) = 0.114% and correlation coefficient of prediction (RP) = 0.9233 where root mean square error of prediction (RMSEP) = 0.165% and residual predicted deviation (RPD) was noted 2.43 and relative standard deviation (RSD) for precision was recorded as ≤3.42%. Based on the predicted results it is obvious that the purposed AuNPs nanosensor coupled Si-GA-PLS model could be successfully employed for caffeine prediction in tea with high sensitivity and rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xiaoyu完成签到 ,获得积分10
1秒前
1秒前
阿迦完成签到,获得积分10
1秒前
miaomiao发布了新的文献求助10
4秒前
4秒前
5秒前
wanci应助szc-2000采纳,获得10
6秒前
莉莉发布了新的文献求助10
7秒前
8秒前
飞走了发布了新的文献求助10
9秒前
memory发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
11秒前
14秒前
小马甲应助剁辣椒蒸鱼头采纳,获得10
15秒前
16秒前
祝君早日毕业完成签到,获得积分10
18秒前
18秒前
晚风中追风完成签到,获得积分10
19秒前
武动樱雪完成签到 ,获得积分10
19秒前
鱼腩发布了新的文献求助10
19秒前
小潘发布了新的文献求助80
20秒前
一只小羊完成签到,获得积分10
20秒前
暴龙战士关注了科研通微信公众号
20秒前
www发布了新的文献求助10
21秒前
斗鱼飞鸟和俞完成签到,获得积分10
21秒前
英俊的铭应助zhang采纳,获得10
22秒前
23秒前
miaomiao完成签到,获得积分10
24秒前
24秒前
飞走了完成签到 ,获得积分10
26秒前
26秒前
你好完成签到,获得积分10
27秒前
蒙开心完成签到 ,获得积分10
28秒前
29秒前
29秒前
Reip379发布了新的文献求助10
29秒前
奔酱完成签到,获得积分10
30秒前
30秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346170
求助须知:如何正确求助?哪些是违规求助? 2972936
关于积分的说明 8657033
捐赠科研通 2653348
什么是DOI,文献DOI怎么找? 1453090
科研通“疑难数据库(出版商)”最低求助积分说明 672741
邀请新用户注册赠送积分活动 662595