Development of Integrated Innovation Experiment Platform Based on 3- PRS Parallel Mechanism

计算机科学 机制(生物学) 运动学 职位(财务) 人工智能 模拟 计算机视觉 定位技术 实时计算 哲学 物理 财务 认识论 经典力学 经济
作者
Guoqiang Chen,Hongpeng Zhou,Junjie Huang,Jiao Feng,Hanchao Li,Zhenzhen Liu
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:14 (3): 396-411 被引量:1
标识
DOI:10.2174/2212797613999201228202533
摘要

Background: The parallel mechanism plays an important role in various fields. The multifunctional integrated innovation experiment platform can improve the utilization rate of the mechanism and be applied in many fields. Objective: The main objective of the study is to establish an integrated innovation experiment platform based on the 3-PRS parallel mechanism, which can be used in typical application and related technology development. Methods: The integrated innovation experiment platform is established and analyzed based on the 3-PRS parallel mechanism. According to the 3D model of the experiment platform, the kinematics and dynamics are analyzed. The force/position control strategy of the system is adopted. According to the function of the experiment platform, two kinds of application and the position and pose measurement technology are developed. The experiment platform is developed by the following methods: (1) The XY table is set up on the fixing platform of the 3-PRS parallel mechanism, so that the mechanism has five degrees of freedom, and the many kinds of workpiece can be easily processed. (2) By selecting the impedance parameter, the experiment platform can realize the compliant control of plantar flexion/dorsiflexion and varus/eversion simultaneously. (3) The binocular vision position and pose measurement method is used to obtain the marked images of the experiment platform through dual cameras, and the position and pose is obtained through image processing, 3D reconstruction and stereo matching, etc. (4) The position and pose detection based on deep learning is divided into two parts: one is to detect the slider height using the regression Convolutional Neural Network (CNN); the other is to compute the position and pose using the Back Propagation Neural Network (BPNN). Results: The experiment results show that the function of the 3-PRS parallel mechanism integrated innovation experiment platform can be effectively realized. The position and pose can be accurately measured in real time using the proposed two measurement methods. The impedance parameters are selected to achieve the rehabilitation training function of the 3-PRS ankle rehabilitation robot and the characters are processed to verify the function of the 3-PRS-XY series-parallel machine tool. Conclusion: The integrated innovation experiment platform based on the 3-PRS parallel mechanism can achieve the function of mechanical processing and rehabilitation training, and can also measure the state of motion in real time through machine vision and deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助研友_8Kedgn采纳,获得10
刚刚
研研发布了新的文献求助10
刚刚
汉堡包应助blueskyzhi采纳,获得10
刚刚
皮蛋完成签到,获得积分10
2秒前
2秒前
鱼贝贝完成签到 ,获得积分10
4秒前
懒洋洋完成签到 ,获得积分10
6秒前
yaxuandeng完成签到,获得积分10
7秒前
7秒前
浮游应助wocao采纳,获得10
8秒前
Lee发布了新的文献求助10
10秒前
11秒前
deeperection发布了新的文献求助10
13秒前
15秒前
丘比特应助ahfjk采纳,获得10
16秒前
youxiu完成签到 ,获得积分10
16秒前
17秒前
dolabmu完成签到 ,获得积分10
18秒前
18秒前
19秒前
jiaxiangxia完成签到 ,获得积分10
20秒前
wang发布了新的文献求助10
20秒前
21秒前
HuSP完成签到,获得积分10
23秒前
菜菜博士发布了新的文献求助10
24秒前
xiaoqi完成签到,获得积分10
24秒前
一包辣条完成签到,获得积分10
24秒前
Rong完成签到 ,获得积分10
24秒前
研友_8Kedgn发布了新的文献求助10
26秒前
应飞飞完成签到,获得积分10
26秒前
甜甜圈完成签到 ,获得积分10
26秒前
厚德载物完成签到,获得积分10
26秒前
LLL完成签到,获得积分10
26秒前
27秒前
28秒前
菜菜博士完成签到,获得积分10
29秒前
浮游应助wocao采纳,获得10
30秒前
南风完成签到,获得积分10
31秒前
JAYZHANG发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429