Development of Integrated Innovation Experiment Platform Based on 3- PRS Parallel Mechanism

计算机科学 机制(生物学) 运动学 职位(财务) 人工智能 模拟 计算机视觉 定位技术 实时计算 哲学 物理 财务 认识论 经典力学 经济
作者
Guoqiang Chen,Hongpeng Zhou,Junjie Huang,Jiao Feng,Hanchao Li,Zhenzhen Liu
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:14 (3): 396-411 被引量:1
标识
DOI:10.2174/2212797613999201228202533
摘要

Background: The parallel mechanism plays an important role in various fields. The multifunctional integrated innovation experiment platform can improve the utilization rate of the mechanism and be applied in many fields. Objective: The main objective of the study is to establish an integrated innovation experiment platform based on the 3-PRS parallel mechanism, which can be used in typical application and related technology development. Methods: The integrated innovation experiment platform is established and analyzed based on the 3-PRS parallel mechanism. According to the 3D model of the experiment platform, the kinematics and dynamics are analyzed. The force/position control strategy of the system is adopted. According to the function of the experiment platform, two kinds of application and the position and pose measurement technology are developed. The experiment platform is developed by the following methods: (1) The XY table is set up on the fixing platform of the 3-PRS parallel mechanism, so that the mechanism has five degrees of freedom, and the many kinds of workpiece can be easily processed. (2) By selecting the impedance parameter, the experiment platform can realize the compliant control of plantar flexion/dorsiflexion and varus/eversion simultaneously. (3) The binocular vision position and pose measurement method is used to obtain the marked images of the experiment platform through dual cameras, and the position and pose is obtained through image processing, 3D reconstruction and stereo matching, etc. (4) The position and pose detection based on deep learning is divided into two parts: one is to detect the slider height using the regression Convolutional Neural Network (CNN); the other is to compute the position and pose using the Back Propagation Neural Network (BPNN). Results: The experiment results show that the function of the 3-PRS parallel mechanism integrated innovation experiment platform can be effectively realized. The position and pose can be accurately measured in real time using the proposed two measurement methods. The impedance parameters are selected to achieve the rehabilitation training function of the 3-PRS ankle rehabilitation robot and the characters are processed to verify the function of the 3-PRS-XY series-parallel machine tool. Conclusion: The integrated innovation experiment platform based on the 3-PRS parallel mechanism can achieve the function of mechanical processing and rehabilitation training, and can also measure the state of motion in real time through machine vision and deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17712570999发布了新的文献求助10
刚刚
刚刚
刚刚
wtjhhh发布了新的文献求助10
2秒前
2秒前
烟花应助哈基汪采纳,获得10
2秒前
3秒前
LOTUS完成签到,获得积分20
3秒前
Lucas应助nl不分采纳,获得10
3秒前
Hello应助武武采纳,获得10
3秒前
妮妮发布了新的文献求助10
3秒前
小金完成签到,获得积分10
3秒前
zhuzihao完成签到,获得积分10
3秒前
小黄人发布了新的文献求助10
4秒前
4秒前
细腻小蜜蜂完成签到,获得积分10
4秒前
5秒前
6秒前
orixero应助刘君卓采纳,获得10
6秒前
米九完成签到 ,获得积分10
6秒前
7秒前
yuuu应助热情蜗牛采纳,获得10
7秒前
阿荣完成签到,获得积分10
7秒前
8秒前
徐昊发布了新的文献求助30
8秒前
8秒前
科研通AI6应助耶啵采纳,获得10
8秒前
8秒前
林泽玉完成签到,获得积分10
8秒前
开朗的豪发布了新的文献求助10
9秒前
9秒前
打打应助机灵书易采纳,获得10
10秒前
ttqql完成签到,获得积分10
10秒前
10秒前
ZZ发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
天天发布了新的文献求助10
11秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450