Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets

熵(时间箭头) 特征选择 粗集 数学 数据挖掘 模糊逻辑 模糊集 特征(语言学) 模式识别(心理学) 不确定数据 人工智能 计算机科学 语言学 哲学 物理 量子力学
作者
Lin Sun,Lanying Wang,Weiping Ding,Yuhua Qian,Jiucheng Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 19-33 被引量:206
标识
DOI:10.1109/tfuzz.2020.2989098
摘要

For heterogeneous data sets containing numerical and symbolic feature values, feature selection based on fuzzy neighborhood multigranulation rough sets (FNMRS) is a very significant step to preprocess data and improve its classification performance. This article presents an FNMRS-based feature selection approach in neighborhood decision systems. First, some concepts of fuzzy neighborhood rough sets and neighborhood multigranulation rough sets are given, and then the FNMRS model is investigated to construct uncertainty measures. Second, the optimistic and pessimistic FNMRS models are built by using fuzzy neighborhood multigranulation lower and upper approximations from algebra view, and some fuzzy neighborhood entropy-based uncertainty measures are developed in information view. Inspired by both algebra and information views based on the FNMRS model, the fuzzy neighborhood pessimistic multigranulation entropy is proposed. Third, the Fisher score model is utilized to delete irrelevant features to decrease the complexity of high-dimensional data sets, and then, a forward feature selection algorithm is provided to promote the performance of heterogeneous data classification. Experimental results on 12 data sets show that the presented model is effective for selecting important features with the higher stability of classification in neighborhood decision systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助顺心向松采纳,获得10
1秒前
留白留白完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
大龙哥886应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
大龙哥886应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
Claudia黄完成签到,获得积分20
4秒前
竹峪卿应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
啦啦啦发布了新的文献求助10
5秒前
7秒前
天天快乐应助mf采纳,获得10
7秒前
7秒前
7秒前
大母大完成签到,获得积分10
7秒前
wanci应助苗条书桃采纳,获得30
8秒前
科研通AI2S应助帆帆帆采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
12秒前
星辰大海应助紧张的毛衣采纳,获得10
13秒前
碧萱发布了新的文献求助10
14秒前
CherishLars完成签到,获得积分10
16秒前
宋子涵完成签到 ,获得积分10
17秒前
renmeitao66_3完成签到,获得积分10
17秒前
衡山后学祝晓钰完成签到,获得积分10
19秒前
悠然地八音完成签到,获得积分10
19秒前
zzz完成签到 ,获得积分10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655