Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets

熵(时间箭头) 特征选择 粗集 数学 数据挖掘 模糊逻辑 模糊集 特征(语言学) 模式识别(心理学) 不确定数据 人工智能 计算机科学 语言学 哲学 物理 量子力学
作者
Lin Sun,Lanying Wang,Weiping Ding,Yuhua Qian,Jiucheng Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 19-33 被引量:206
标识
DOI:10.1109/tfuzz.2020.2989098
摘要

For heterogeneous data sets containing numerical and symbolic feature values, feature selection based on fuzzy neighborhood multigranulation rough sets (FNMRS) is a very significant step to preprocess data and improve its classification performance. This article presents an FNMRS-based feature selection approach in neighborhood decision systems. First, some concepts of fuzzy neighborhood rough sets and neighborhood multigranulation rough sets are given, and then the FNMRS model is investigated to construct uncertainty measures. Second, the optimistic and pessimistic FNMRS models are built by using fuzzy neighborhood multigranulation lower and upper approximations from algebra view, and some fuzzy neighborhood entropy-based uncertainty measures are developed in information view. Inspired by both algebra and information views based on the FNMRS model, the fuzzy neighborhood pessimistic multigranulation entropy is proposed. Third, the Fisher score model is utilized to delete irrelevant features to decrease the complexity of high-dimensional data sets, and then, a forward feature selection algorithm is provided to promote the performance of heterogeneous data classification. Experimental results on 12 data sets show that the presented model is effective for selecting important features with the higher stability of classification in neighborhood decision systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
照亮世界的ay完成签到,获得积分10
刚刚
城南以南发布了新的文献求助10
1秒前
13击发布了新的文献求助10
1秒前
1秒前
buno应助zyz1132采纳,获得10
1秒前
1秒前
共享精神应助MX001采纳,获得10
1秒前
2秒前
2秒前
怕孤单的嚣完成签到,获得积分10
2秒前
先生完成签到,获得积分10
2秒前
2秒前
zsy发布了新的文献求助10
2秒前
2秒前
苏silence发布了新的文献求助10
3秒前
我爱学习发布了新的文献求助10
3秒前
3秒前
MouLi应助again采纳,获得10
3秒前
int0完成签到,获得积分10
3秒前
3秒前
3秒前
天天快乐应助塵埃采纳,获得10
4秒前
汉堡包应助如常采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
郑大钱发布了新的文献求助10
5秒前
5秒前
xliiii发布了新的文献求助10
5秒前
丹D应助天明采纳,获得10
5秒前
5秒前
6秒前
6秒前
孙皓阳发布了新的文献求助10
6秒前
Benjamin发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
7秒前
lz123发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017