Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets

熵(时间箭头) 特征选择 粗集 数学 数据挖掘 模糊逻辑 模糊集 特征(语言学) 模式识别(心理学) 不确定数据 人工智能 计算机科学 语言学 哲学 物理 量子力学
作者
Lin Sun,Lanying Wang,Weiping Ding,Yuhua Qian,Jiucheng Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 19-33 被引量:206
标识
DOI:10.1109/tfuzz.2020.2989098
摘要

For heterogeneous data sets containing numerical and symbolic feature values, feature selection based on fuzzy neighborhood multigranulation rough sets (FNMRS) is a very significant step to preprocess data and improve its classification performance. This article presents an FNMRS-based feature selection approach in neighborhood decision systems. First, some concepts of fuzzy neighborhood rough sets and neighborhood multigranulation rough sets are given, and then the FNMRS model is investigated to construct uncertainty measures. Second, the optimistic and pessimistic FNMRS models are built by using fuzzy neighborhood multigranulation lower and upper approximations from algebra view, and some fuzzy neighborhood entropy-based uncertainty measures are developed in information view. Inspired by both algebra and information views based on the FNMRS model, the fuzzy neighborhood pessimistic multigranulation entropy is proposed. Third, the Fisher score model is utilized to delete irrelevant features to decrease the complexity of high-dimensional data sets, and then, a forward feature selection algorithm is provided to promote the performance of heterogeneous data classification. Experimental results on 12 data sets show that the presented model is effective for selecting important features with the higher stability of classification in neighborhood decision systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
太想毕业了完成签到,获得积分10
1秒前
年轻的冬亦完成签到,获得积分10
1秒前
2秒前
眨眼发布了新的文献求助10
2秒前
2秒前
能干的向真应助lolo采纳,获得10
2秒前
2秒前
2秒前
Green完成签到,获得积分10
2秒前
布洛芬发布了新的文献求助10
3秒前
无000发布了新的文献求助10
3秒前
纯真忆安发布了新的文献求助10
3秒前
白白SAMA123发布了新的文献求助10
3秒前
小苏同学应助文艺向日葵采纳,获得10
4秒前
4秒前
4秒前
干净的迎荷完成签到,获得积分10
5秒前
柠檬发布了新的文献求助30
5秒前
开心荔枝关注了科研通微信公众号
5秒前
NexusExplorer应助月月采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
景绝义发布了新的文献求助10
6秒前
非常六加一完成签到,获得积分10
6秒前
扎心应助huan采纳,获得10
6秒前
Sue完成签到,获得积分10
6秒前
打打应助嗯嗯嗯采纳,获得10
7秒前
正直远望发布了新的文献求助10
7秒前
KST发布了新的文献求助10
7秒前
科目三应助yang采纳,获得10
7秒前
8秒前
Tera发布了新的文献求助20
9秒前
学术小牛发布了新的文献求助10
9秒前
orixero应助接q辣舞采纳,获得10
9秒前
lumos发布了新的文献求助10
9秒前
无000完成签到,获得积分10
10秒前
糖葫芦发布了新的文献求助10
10秒前
美好的凉面完成签到,获得积分10
10秒前
小二郎应助coco采纳,获得10
11秒前
yydragen应助uxu采纳,获得50
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288