Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets

熵(时间箭头) 特征选择 粗集 数学 数据挖掘 模糊逻辑 模糊集 特征(语言学) 模式识别(心理学) 不确定数据 人工智能 计算机科学 语言学 哲学 物理 量子力学
作者
Lin Sun,Lanying Wang,Weiping Ding,Yuhua Qian,Jiucheng Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 19-33 被引量:206
标识
DOI:10.1109/tfuzz.2020.2989098
摘要

For heterogeneous data sets containing numerical and symbolic feature values, feature selection based on fuzzy neighborhood multigranulation rough sets (FNMRS) is a very significant step to preprocess data and improve its classification performance. This article presents an FNMRS-based feature selection approach in neighborhood decision systems. First, some concepts of fuzzy neighborhood rough sets and neighborhood multigranulation rough sets are given, and then the FNMRS model is investigated to construct uncertainty measures. Second, the optimistic and pessimistic FNMRS models are built by using fuzzy neighborhood multigranulation lower and upper approximations from algebra view, and some fuzzy neighborhood entropy-based uncertainty measures are developed in information view. Inspired by both algebra and information views based on the FNMRS model, the fuzzy neighborhood pessimistic multigranulation entropy is proposed. Third, the Fisher score model is utilized to delete irrelevant features to decrease the complexity of high-dimensional data sets, and then, a forward feature selection algorithm is provided to promote the performance of heterogeneous data classification. Experimental results on 12 data sets show that the presented model is effective for selecting important features with the higher stability of classification in neighborhood decision systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪青雪发布了新的文献求助10
刚刚
orixero应助明理的依柔采纳,获得10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
小蘑菇应助Ddd采纳,获得30
2秒前
Eon完成签到 ,获得积分10
2秒前
充电宝应助无辜不言采纳,获得10
3秒前
汉堡包应助王思祺采纳,获得10
3秒前
十六完成签到,获得积分10
3秒前
www发布了新的文献求助10
3秒前
3秒前
软软橙完成签到,获得积分10
3秒前
冷月完成签到,获得积分10
3秒前
科研通AI2S应助畅快访蕊采纳,获得10
4秒前
呆呆发布了新的文献求助10
4秒前
YY发布了新的文献求助10
4秒前
科研通AI6应助taster采纳,获得10
5秒前
5秒前
笨笨的诗槐完成签到 ,获得积分10
6秒前
liuliu发布了新的文献求助10
6秒前
ssxxx发布了新的文献求助10
6秒前
hmy发布了新的文献求助10
6秒前
zhou发布了新的文献求助10
7秒前
Epiphany完成签到 ,获得积分10
7秒前
浮游应助叨叨采纳,获得10
7秒前
传奇3应助小景007采纳,获得10
8秒前
8秒前
8秒前
9秒前
KiKi完成签到 ,获得积分10
9秒前
9秒前
寒冷诗霜完成签到,获得积分10
9秒前
10秒前
岩追研完成签到,获得积分10
10秒前
11秒前
乐乐应助liugm采纳,获得10
11秒前
小蘑菇应助viv采纳,获得10
11秒前
mmmm完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434796
求助须知:如何正确求助?哪些是违规求助? 4547135
关于积分的说明 14206191
捐赠科研通 4467229
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439403
关于科研通互助平台的介绍 1416096