Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets

熵(时间箭头) 特征选择 粗集 数学 数据挖掘 模糊逻辑 模糊集 特征(语言学) 模式识别(心理学) 不确定数据 人工智能 计算机科学 语言学 哲学 物理 量子力学
作者
Lin Sun,Lanying Wang,Weiping Ding,Yuhua Qian,Jiucheng Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 19-33 被引量:206
标识
DOI:10.1109/tfuzz.2020.2989098
摘要

For heterogeneous data sets containing numerical and symbolic feature values, feature selection based on fuzzy neighborhood multigranulation rough sets (FNMRS) is a very significant step to preprocess data and improve its classification performance. This article presents an FNMRS-based feature selection approach in neighborhood decision systems. First, some concepts of fuzzy neighborhood rough sets and neighborhood multigranulation rough sets are given, and then the FNMRS model is investigated to construct uncertainty measures. Second, the optimistic and pessimistic FNMRS models are built by using fuzzy neighborhood multigranulation lower and upper approximations from algebra view, and some fuzzy neighborhood entropy-based uncertainty measures are developed in information view. Inspired by both algebra and information views based on the FNMRS model, the fuzzy neighborhood pessimistic multigranulation entropy is proposed. Third, the Fisher score model is utilized to delete irrelevant features to decrease the complexity of high-dimensional data sets, and then, a forward feature selection algorithm is provided to promote the performance of heterogeneous data classification. Experimental results on 12 data sets show that the presented model is effective for selecting important features with the higher stability of classification in neighborhood decision systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助zzz采纳,获得10
刚刚
Owen应助rr采纳,获得10
刚刚
Criminology34应助踏实的乘风采纳,获得10
2秒前
Criminology34应助踏实的乘风采纳,获得10
2秒前
2秒前
2秒前
2秒前
南枳有安完成签到,获得积分10
3秒前
大模型应助谦让的口红采纳,获得10
3秒前
louise发布了新的文献求助10
3秒前
3秒前
leomei发布了新的文献求助10
4秒前
银玥发布了新的文献求助10
4秒前
5秒前
永远完成签到,获得积分10
5秒前
成佳策完成签到,获得积分20
6秒前
沈宸发布了新的文献求助10
6秒前
jy完成签到 ,获得积分10
6秒前
7秒前
MG_XSJ完成签到,获得积分10
7秒前
风中凌旋应助科研通管家采纳,获得10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
风中凌旋应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
AN应助科研通管家采纳,获得30
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
AN应助科研通管家采纳,获得30
8秒前
风中凌旋应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得20
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
元谷雪应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
侯总应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487