羟基化
生物合成
化学
细胞色素P450
生物化学
立体化学
酶
细胞色素
奥西诺
作者
Wan Song,Yibin Zhuang,Tao Liu
出处
期刊:Phytochemistry
[Elsevier]
日期:2020-04-16
卷期号:175: 112375-112375
被引量:23
标识
DOI:10.1016/j.phytochem.2020.112375
摘要
Shikonin is a natural naphthoquinone derivative that specifically occurs in boraginaceous plants, and the major active ingredient of the medicinal plant Lithospermum erythrorhizon. Previously, a cytochrome P450 oxygenase (CYP) CYP76B74 catalyzing 3″-hydroxylation of geranylhydroquinone (GHQ) — a key intermediate of shikonin biosynthesis, was identified from cultured cells of Arnebia euchroma. However, the enzymes catalyzing oxidation of the geranyl side-chain of GHQ from L. erythrorhizon remain unknown. In this study, we performed transcriptome analysis of different tissues (red roots and green leaves/stems) from L. erythrorhizon using RNA sequencing technology. Highly expressed CYP genes found in the roots were then heterologously expressed in Saccharomyces cerevisiae and functionally screened with GHQ as the substrate. As the result, two CYPs of CYP76B subfamily catalyzing the oxidation of GHQ were characterized. CYP76B100 catalyzed the hydroxylation of the geranyl side-chain of GHQ at the C-3″ position to form 3″-hydroxyl geranylhydroquinone (GHQ-3″-OH). The enzyme CYP76B101 carried out oxidation reaction of GHQ at the C-3″ position to produce a 3″-carboxylic acid derivative of GHQ (GHQ-3″-COOH) as well as GHQ-3″-OH. This enzyme-catalyzed oxidation reaction with GHQ as the substrate is reported for the first time. This study implicates CYP76B100 and CYP76B101 as having a potential role in shikonin biosynthesis in L. erythrorhizon.
科研通智能强力驱动
Strongly Powered by AbleSci AI