亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved rainfall nowcasting using Burgers’ equation

平流 临近预报 扩散 数学 伯格斯方程 对流扩散方程 扩散方程 气象学 应用数学 偏微分方程 数学分析 物理 热力学 经济 经济 服务(商务)
作者
Soorok Ryu,Geunsu Lyu,Younghae Do,GyuWon Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:581: 124140-124140 被引量:15
标识
DOI:10.1016/j.jhydrol.2019.124140
摘要

Nowcasting of surface precipitation from radar data typically relies on algorithms that calculate advection, such as the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). This method offers high spatial and temporal resolution but it cannot represent the growth-decay of precipitation and non-stationary advection vector fields. In this study, we propose some nowcasting rainfall models based on advection-diffusion equation with non-stationary motion vectors. The diffusion term of this equation gives to smoother rainfall predictions for lead times and increased skill scores. The motion vectors are updated in each time step by solving a system of two-dimensional (2D) Burgers’ equation. The proposed forecasting models use the following three steps. First, an initial motion vector field is approximated using the Variational Echo Tracking (VET) algorithm. Second, a forecast is obtained for each time step by solving a time-dependent advection or advection-diffusion equation. In this step, the motion vectors are updated by solving Burgers’ equation. Lastly, forecasts are evaluated with lead times from 2.5 min to 3 h, and forecasts are compared with rain rate observations for six events over a 250×250 km2 region in southeastern South Korea. To observe the effects of the diffusion term and Burgers’ equation, four variants of the proposed modeling methods are considered, depending on the equations: advection equation (Type 1), advection and Burgers’ equations (Type 2), advection-diffusion equation (Type 3), and combination of the advection–diffusion and Burgers’ equations (Type 4). The forecasts from the Type 1 method are very similar to those of MAPLE. The other models (Type 2–4) yielded clearly better skill scores and correlation on average, with up to 3 h’ lead time. Models that use Burgers’ equation (Type 2 and Type 4) give much better scores than other methods using fixed motion vectors when the temporal variation of the motion vectors is large.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
趁微风不躁完成签到,获得积分10
35秒前
大力不评发布了新的文献求助10
39秒前
TXZ06完成签到,获得积分10
49秒前
51秒前
科研通AI2S应助spark采纳,获得10
55秒前
大力不评完成签到,获得积分20
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
haoqingyun发布了新的文献求助10
2分钟前
hanwei_mei发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hanwei_mei完成签到,获得积分10
2分钟前
haoqingyun发布了新的文献求助10
3分钟前
CodeCraft应助腼腆的月亮采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助wuran采纳,获得10
3分钟前
haoqingyun完成签到,获得积分10
3分钟前
搔扒完成签到,获得积分10
4分钟前
大熊完成签到 ,获得积分10
4分钟前
sy完成签到 ,获得积分10
4分钟前
情怀应助安详的面包采纳,获得10
4分钟前
qqq完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
远方完成签到,获得积分10
5分钟前
浮游应助wuran采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
7分钟前
佳佳发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
Akim应助佳佳采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585