Improved rainfall nowcasting using Burgers’ equation

平流 临近预报 扩散 数学 伯格斯方程 对流扩散方程 扩散方程 气象学 应用数学 偏微分方程 数学分析 物理 热力学 经济 经济 服务(商务)
作者
Soorok Ryu,Geunsu Lyu,Younghae Do,GyuWon Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:581: 124140-124140 被引量:15
标识
DOI:10.1016/j.jhydrol.2019.124140
摘要

Nowcasting of surface precipitation from radar data typically relies on algorithms that calculate advection, such as the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). This method offers high spatial and temporal resolution but it cannot represent the growth-decay of precipitation and non-stationary advection vector fields. In this study, we propose some nowcasting rainfall models based on advection-diffusion equation with non-stationary motion vectors. The diffusion term of this equation gives to smoother rainfall predictions for lead times and increased skill scores. The motion vectors are updated in each time step by solving a system of two-dimensional (2D) Burgers’ equation. The proposed forecasting models use the following three steps. First, an initial motion vector field is approximated using the Variational Echo Tracking (VET) algorithm. Second, a forecast is obtained for each time step by solving a time-dependent advection or advection-diffusion equation. In this step, the motion vectors are updated by solving Burgers’ equation. Lastly, forecasts are evaluated with lead times from 2.5 min to 3 h, and forecasts are compared with rain rate observations for six events over a 250×250 km2 region in southeastern South Korea. To observe the effects of the diffusion term and Burgers’ equation, four variants of the proposed modeling methods are considered, depending on the equations: advection equation (Type 1), advection and Burgers’ equations (Type 2), advection-diffusion equation (Type 3), and combination of the advection–diffusion and Burgers’ equations (Type 4). The forecasts from the Type 1 method are very similar to those of MAPLE. The other models (Type 2–4) yielded clearly better skill scores and correlation on average, with up to 3 h’ lead time. Models that use Burgers’ equation (Type 2 and Type 4) give much better scores than other methods using fixed motion vectors when the temporal variation of the motion vectors is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzzt完成签到 ,获得积分10
刚刚
1秒前
领导范儿应助乐生采纳,获得10
1秒前
完美世界应助aaaaa采纳,获得10
1秒前
2秒前
大气建辉完成签到 ,获得积分10
3秒前
Hello应助ZZH采纳,获得10
3秒前
4秒前
Jasper应助后叶忽安采纳,获得10
4秒前
天天向上发布了新的文献求助10
4秒前
美好芷波完成签到,获得积分20
4秒前
4秒前
福star高照完成签到,获得积分10
5秒前
甜甜的莞完成签到 ,获得积分10
5秒前
舒心的紫雪完成签到 ,获得积分10
6秒前
Jasper应助不会做科研采纳,获得10
6秒前
欢喜若灵完成签到,获得积分10
6秒前
xzzt发布了新的文献求助10
7秒前
9秒前
10秒前
情怀应助萧a采纳,获得10
10秒前
Owen应助hongweizhao采纳,获得10
10秒前
10秒前
aaaaa完成签到,获得积分10
11秒前
后叶忽安完成签到,获得积分10
11秒前
zhang完成签到,获得积分10
11秒前
11秒前
Doris发布了新的文献求助30
11秒前
uu完成签到,获得积分10
12秒前
平常的青寒完成签到 ,获得积分10
13秒前
aaaaa发布了新的文献求助10
14秒前
大方千山完成签到,获得积分10
15秒前
15秒前
乐生发布了新的文献求助10
16秒前
17秒前
18秒前
无情白猫发布了新的文献求助10
19秒前
21秒前
23秒前
852应助天真尔安采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464