Improved rainfall nowcasting using Burgers’ equation

平流 临近预报 扩散 数学 伯格斯方程 对流扩散方程 扩散方程 气象学 应用数学 偏微分方程 数学分析 物理 热力学 经济 经济 服务(商务)
作者
Soorok Ryu,Geunsu Lyu,Younghae Do,GyuWon Lee
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:581: 124140-124140 被引量:15
标识
DOI:10.1016/j.jhydrol.2019.124140
摘要

Nowcasting of surface precipitation from radar data typically relies on algorithms that calculate advection, such as the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). This method offers high spatial and temporal resolution but it cannot represent the growth-decay of precipitation and non-stationary advection vector fields. In this study, we propose some nowcasting rainfall models based on advection-diffusion equation with non-stationary motion vectors. The diffusion term of this equation gives to smoother rainfall predictions for lead times and increased skill scores. The motion vectors are updated in each time step by solving a system of two-dimensional (2D) Burgers’ equation. The proposed forecasting models use the following three steps. First, an initial motion vector field is approximated using the Variational Echo Tracking (VET) algorithm. Second, a forecast is obtained for each time step by solving a time-dependent advection or advection-diffusion equation. In this step, the motion vectors are updated by solving Burgers’ equation. Lastly, forecasts are evaluated with lead times from 2.5 min to 3 h, and forecasts are compared with rain rate observations for six events over a 250×250 km2 region in southeastern South Korea. To observe the effects of the diffusion term and Burgers’ equation, four variants of the proposed modeling methods are considered, depending on the equations: advection equation (Type 1), advection and Burgers’ equations (Type 2), advection-diffusion equation (Type 3), and combination of the advection–diffusion and Burgers’ equations (Type 4). The forecasts from the Type 1 method are very similar to those of MAPLE. The other models (Type 2–4) yielded clearly better skill scores and correlation on average, with up to 3 h’ lead time. Models that use Burgers’ equation (Type 2 and Type 4) give much better scores than other methods using fixed motion vectors when the temporal variation of the motion vectors is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新之助完成签到,获得积分10
刚刚
上官发布了新的文献求助10
刚刚
lqkcqmu发布了新的文献求助30
1秒前
呼噜完成签到,获得积分10
1秒前
研友_VZG7GZ应助燕子采纳,获得30
1秒前
高贵的乐天完成签到 ,获得积分10
1秒前
Hello应助阿瓦隆的蓝胖子采纳,获得30
1秒前
少年白777完成签到,获得积分10
1秒前
王金豪完成签到,获得积分10
1秒前
2秒前
Yellue发布了新的文献求助10
2秒前
drl完成签到,获得积分10
2秒前
CodeCraft应助xiaomili采纳,获得10
5秒前
5秒前
5秒前
爆米花应助啦啦啦采纳,获得10
6秒前
新之助发布了新的文献求助10
6秒前
6秒前
qw1完成签到,获得积分20
6秒前
舒适的尔容完成签到,获得积分10
6秒前
Ryan完成签到,获得积分10
7秒前
高大笙完成签到,获得积分10
7秒前
兑润泽完成签到,获得积分10
7秒前
7秒前
reece完成签到 ,获得积分10
7秒前
8秒前
wsh071117完成签到,获得积分10
8秒前
小蘑菇应助mwy采纳,获得10
8秒前
无花果应助刘莅采纳,获得10
8秒前
8秒前
ED应助lqkcqmu采纳,获得10
9秒前
9秒前
9秒前
高贵以珊发布了新的文献求助10
10秒前
10秒前
10秒前
明理的惜雪完成签到,获得积分10
11秒前
科目三应助天地一沙鸥采纳,获得10
11秒前
Jerry完成签到,获得积分10
11秒前
LHTTT完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600