亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact diagnosis in stiffened structural panels using a deep learning approach

计算机科学 背景(考古学) 一般化 人工智能 深度学习 领域(数学分析) 维数之咒 计算机视觉 地质学 数学 数学分析 古生物学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (2): 681-691 被引量:36
标识
DOI:10.1177/1475921720925044
摘要

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jayzie完成签到 ,获得积分10
2秒前
3秒前
lihailong发布了新的文献求助10
7秒前
8秒前
8秒前
HXY完成签到,获得积分10
8秒前
mdmdd完成签到,获得积分10
10秒前
15秒前
Jessica完成签到,获得积分10
15秒前
21秒前
与光发布了新的文献求助10
25秒前
深情安青应助吃吃菜菜吧采纳,获得10
26秒前
zqq完成签到,获得积分0
45秒前
小葵发布了新的文献求助30
51秒前
研友_GZ3zRn完成签到 ,获得积分0
55秒前
heartyi完成签到 ,获得积分10
55秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
lxl发布了新的文献求助10
1分钟前
qiaorankongling完成签到 ,获得积分10
1分钟前
阉太狼完成签到,获得积分10
1分钟前
汉堡包应助lll采纳,获得10
1分钟前
1分钟前
牧沛凝发布了新的文献求助10
2分钟前
周娅敏完成签到,获得积分10
2分钟前
义气丹雪应助miniou采纳,获得10
2分钟前
2分钟前
2分钟前
周娅敏发布了新的文献求助30
2分钟前
梨园春完成签到,获得积分10
2分钟前
2分钟前
友好绿柏完成签到,获得积分10
2分钟前
yexu完成签到,获得积分10
2分钟前
lll发布了新的文献求助10
2分钟前
霓霓完成签到,获得积分10
2分钟前
lll完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
cheerfulsmurfs完成签到,获得积分10
2分钟前
微笑的匪完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799