Impact diagnosis in stiffened structural panels using a deep learning approach

计算机科学 背景(考古学) 一般化 人工智能 深度学习 领域(数学分析) 维数之咒 计算机视觉 地质学 数学 数学分析 古生物学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (2): 681-691 被引量:36
标识
DOI:10.1177/1475921720925044
摘要

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Sophia采纳,获得10
1秒前
七慕凉应助归尘采纳,获得10
1秒前
1秒前
小滕同学完成签到 ,获得积分10
1秒前
2秒前
2秒前
七慕凉应助归尘采纳,获得10
2秒前
zjq完成签到,获得积分10
3秒前
3秒前
顺利的尔冬完成签到,获得积分10
3秒前
3秒前
罗小童发布了新的文献求助30
3秒前
romeo发布了新的文献求助10
3秒前
3秒前
geg完成签到,获得积分10
4秒前
4秒前
三月兔发布了新的文献求助10
4秒前
4秒前
落尘完成签到,获得积分10
4秒前
夜将尽应助归尘采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
zhaowenxian完成签到,获得积分10
5秒前
6秒前
rui发布了新的文献求助10
6秒前
夜将尽应助归尘采纳,获得10
7秒前
zjq发布了新的文献求助10
7秒前
菜菜完成签到,获得积分10
7秒前
高玉峰发布了新的文献求助10
7秒前
研友_VZG7GZ应助Gavin采纳,获得10
7秒前
7秒前
乐乐应助Zhaobin采纳,获得10
8秒前
Stone完成签到 ,获得积分10
8秒前
9秒前
jiejie完成签到 ,获得积分10
9秒前
海蓝云天应助归尘采纳,获得10
9秒前
正直焦发布了新的文献求助10
9秒前
回忆完成签到,获得积分10
10秒前
lt完成签到,获得积分10
10秒前
romeo发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774