已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact diagnosis in stiffened structural panels using a deep learning approach

计算机科学 背景(考古学) 一般化 人工智能 深度学习 领域(数学分析) 维数之咒 计算机视觉 地质学 数学 数学分析 古生物学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (2): 681-691 被引量:36
标识
DOI:10.1177/1475921720925044
摘要

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助山水之乐采纳,获得10
1秒前
1秒前
1111完成签到 ,获得积分10
1秒前
陶醉晓凡发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
FashionBoy应助Lavender采纳,获得10
3秒前
3秒前
cc完成签到,获得积分10
4秒前
小桃枝发布了新的文献求助10
5秒前
zeng完成签到,获得积分10
6秒前
moon完成签到,获得积分10
6秒前
6秒前
英姑应助大吉采纳,获得10
7秒前
7秒前
Hello应助wdd采纳,获得10
7秒前
CodeCraft应助小刘哥儿采纳,获得10
7秒前
8秒前
羽羽完成签到 ,获得积分10
8秒前
Raven应助胡豆采纳,获得10
8秒前
9秒前
xiaomeng完成签到 ,获得积分10
9秒前
逃跑冰蓝发布了新的文献求助10
9秒前
俭朴映阳发布了新的文献求助10
10秒前
打打应助Zyc采纳,获得10
12秒前
阿明留下了新的社区评论
13秒前
14秒前
Criminology34应助小刘哥儿采纳,获得10
15秒前
小林驳回了wjk应助
16秒前
16秒前
16秒前
科研通AI6应助正常采纳,获得10
17秒前
葱葱完成签到,获得积分10
18秒前
味精发布了新的文献求助10
19秒前
20秒前
20秒前
健康的千易完成签到,获得积分10
20秒前
Criminology34应助小桃枝采纳,获得10
21秒前
大吉发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719