亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact diagnosis in stiffened structural panels using a deep learning approach

计算机科学 背景(考古学) 一般化 人工智能 深度学习 领域(数学分析) 维数之咒 计算机视觉 地质学 数学 数学分析 古生物学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (2): 681-691 被引量:36
标识
DOI:10.1177/1475921720925044
摘要

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyinni应助GYF采纳,获得10
3秒前
Ava应助GYF采纳,获得10
3秒前
烟花应助xiaoya采纳,获得10
4秒前
科研通AI5应助赤恩采纳,获得10
12秒前
22秒前
赤恩发布了新的文献求助10
29秒前
34秒前
乐乐应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得30
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
李健应助科研通管家采纳,获得10
35秒前
39秒前
大鼻子的新四岁完成签到,获得积分10
40秒前
41秒前
赤恩完成签到,获得积分10
41秒前
yyy完成签到,获得积分10
59秒前
殷勤的青槐完成签到,获得积分20
1分钟前
风衣拖地完成签到 ,获得积分10
1分钟前
风趣的豆芽完成签到,获得积分10
1分钟前
草莓熊1215完成签到 ,获得积分10
1分钟前
殷勤的青槐关注了科研通微信公众号
1分钟前
1分钟前
Okanryo发布了新的文献求助100
2分钟前
CES_SH完成签到,获得积分10
2分钟前
布鲁爱思完成签到,获得积分10
2分钟前
weibo完成签到,获得积分10
2分钟前
聪慧的正豪应助yb采纳,获得30
2分钟前
Nan语发布了新的文献求助10
2分钟前
小杭76应助Nan语采纳,获得10
2分钟前
酷波er应助精明的开山采纳,获得10
2分钟前
Hvginn完成签到,获得积分10
3分钟前
Nan语完成签到,获得积分20
3分钟前
3分钟前
CK完成签到 ,获得积分10
3分钟前
yb完成签到,获得积分10
3分钟前
文欣完成签到 ,获得积分0
3分钟前
香菜张完成签到,获得积分10
4分钟前
4分钟前
CVI发布了新的文献求助10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4964716
求助须知:如何正确求助?哪些是违规求助? 4223702
关于积分的说明 13154566
捐赠科研通 4009067
什么是DOI,文献DOI怎么找? 2194180
邀请新用户注册赠送积分活动 1207830
关于科研通互助平台的介绍 1120613