Impact diagnosis in stiffened structural panels using a deep learning approach

计算机科学 背景(考古学) 一般化 人工智能 深度学习 领域(数学分析) 维数之咒 计算机视觉 地质学 数学 数学分析 古生物学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (2): 681-691 被引量:36
标识
DOI:10.1177/1475921720925044
摘要

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
弓长木易完成签到,获得积分10
1秒前
飞云发布了新的文献求助10
1秒前
孤星发布了新的文献求助10
2秒前
小小浩发布了新的文献求助10
4秒前
酷波er应助姜丝炒土豆丝采纳,获得10
4秒前
qianghw发布了新的文献求助10
4秒前
欢呼芷雪发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
香蕉觅云应助InsomniaFlight采纳,获得10
8秒前
9秒前
CipherSage应助大苏打v发vv额采纳,获得10
9秒前
htumfg完成签到,获得积分10
11秒前
伴Y发布了新的文献求助10
11秒前
12秒前
赛赛发布了新的文献求助10
12秒前
于采文发布了新的文献求助10
13秒前
chy完成签到,获得积分20
13秒前
13秒前
大力云朵发布了新的文献求助20
15秒前
沉静蘑菇发布了新的文献求助10
15秒前
15秒前
16秒前
舒适静丹发布了新的文献求助10
16秒前
小小浩完成签到,获得积分10
16秒前
Jin完成签到 ,获得积分10
16秒前
嗷呜完成签到,获得积分10
16秒前
FAQ应助香蕉八宝粥采纳,获得20
17秒前
lmx发布了新的文献求助10
17秒前
qianghw完成签到,获得积分10
17秒前
中国好青年关注了科研通微信公众号
19秒前
雨纷纷发布了新的文献求助10
20秒前
chy发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
豆豆完成签到,获得积分10
21秒前
萧羽完成签到,获得积分10
21秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829