Impact diagnosis in stiffened structural panels using a deep learning approach

计算机科学 背景(考古学) 一般化 人工智能 深度学习 领域(数学分析) 维数之咒 计算机视觉 地质学 数学 数学分析 古生物学
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (2): 681-691 被引量:36
标识
DOI:10.1177/1475921720925044
摘要

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤火虫完成签到,获得积分10
刚刚
勤奋雨完成签到,获得积分10
刚刚
刚刚
李爱国应助琉璃岁月采纳,获得10
刚刚
mss12138完成签到,获得积分0
1秒前
yu完成签到 ,获得积分10
1秒前
无限达完成签到,获得积分10
1秒前
纵马长歌完成签到,获得积分10
1秒前
1秒前
Serena完成签到,获得积分20
2秒前
zhao完成签到,获得积分10
2秒前
陈琳完成签到,获得积分10
3秒前
Colin_chen完成签到,获得积分10
3秒前
之以发布了新的文献求助10
4秒前
洋山芋完成签到,获得积分10
4秒前
ferritin完成签到 ,获得积分10
4秒前
haoyunlai完成签到,获得积分10
4秒前
彩虹天堂完成签到,获得积分10
4秒前
decademe完成签到,获得积分10
5秒前
5秒前
l六分之一完成签到,获得积分10
5秒前
精明妙之完成签到,获得积分10
6秒前
研友_LX7478完成签到,获得积分10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
iNk应助科研通管家采纳,获得20
7秒前
约克宁发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
zy_完成签到,获得积分10
8秒前
共享精神应助老A采纳,获得30
8秒前
8秒前
安慕希完成签到,获得积分10
9秒前
9秒前
10秒前
x笑一发布了新的文献求助10
11秒前
宁阿霜完成签到,获得积分10
11秒前
Cxxxx完成签到 ,获得积分10
11秒前
ttc完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874