Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit

计算机科学 深度学习 稳健性(进化) 图形 建筑 人工智能 城市轨道交通 流入 网络体系结构 数据挖掘 工程类 运输工程 计算机网络 理论计算机科学 视觉艺术 机械 基因 物理 化学 艺术 生物化学
作者
Jinlei Zhang,Chen Feng,Zhiyong Cui,Yinan Guo,Yadi Zhu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 7004-7014 被引量:190
标识
DOI:10.1109/tits.2020.3000761
摘要

Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called "ResLSTM") to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
威士忌www完成签到,获得积分10
1秒前
小卒完成签到,获得积分10
2秒前
研友发布了新的文献求助10
3秒前
彬彬完成签到,获得积分10
3秒前
义气山柳完成签到,获得积分10
3秒前
4秒前
4秒前
香蕉觅云应助范书豪采纳,获得30
5秒前
田様应助柒_l采纳,获得10
5秒前
陈玉锋完成签到,获得积分20
6秒前
6秒前
6秒前
a61完成签到,获得积分10
6秒前
8秒前
林大侠发布了新的文献求助10
8秒前
8秒前
FashionBoy应助Song采纳,获得10
9秒前
10秒前
芋芋完成签到,获得积分10
10秒前
abcd发布了新的文献求助10
10秒前
QIEZI发布了新的文献求助10
10秒前
11秒前
12秒前
vicky完成签到,获得积分10
12秒前
所所应助紧张的惜梦采纳,获得10
14秒前
lmz发布了新的文献求助10
14秒前
沙心发布了新的文献求助10
15秒前
风清扬应助andrele采纳,获得30
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
Ava应助Sheng采纳,获得10
19秒前
七七完成签到 ,获得积分10
21秒前
22秒前
果粒橙完成签到 ,获得积分10
22秒前
酷波er应助小易采纳,获得10
23秒前
柒_l发布了新的文献求助10
23秒前
23秒前
乐乐应助Dahai采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797