Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit

计算机科学 深度学习 稳健性(进化) 图形 建筑 人工智能 城市轨道交通 流入 网络体系结构 数据挖掘 工程类 运输工程 计算机网络 理论计算机科学 视觉艺术 机械 基因 物理 化学 艺术 生物化学
作者
Jinlei Zhang,Chen Feng,Zhiyong Cui,Yinan Guo,Yadi Zhu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 7004-7014 被引量:171
标识
DOI:10.1109/tits.2020.3000761
摘要

Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called "ResLSTM") to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
guoguo发布了新的文献求助10
刚刚
1秒前
灵巧的雁易完成签到,获得积分10
1秒前
badercao完成签到,获得积分10
1秒前
Wuwuwu发布了新的文献求助10
1秒前
Re完成签到,获得积分10
1秒前
1秒前
老鱼娜娜完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
归尘发布了新的文献求助20
3秒前
行毅文完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助凶狠的蓉采纳,获得10
3秒前
RNNNLL发布了新的文献求助10
4秒前
zhfliang完成签到,获得积分10
4秒前
乐乐妈完成签到,获得积分10
4秒前
4秒前
4秒前
帅气蓝发布了新的文献求助10
4秒前
4秒前
4秒前
Bao完成签到 ,获得积分10
4秒前
rosexu完成签到,获得积分20
5秒前
等待的大炮完成签到,获得积分10
5秒前
超的爱123完成签到 ,获得积分10
5秒前
大个应助迅速的代桃采纳,获得10
5秒前
852应助麦克尔采纳,获得10
6秒前
Daaz完成签到 ,获得积分10
6秒前
6秒前
八块腹肌发布了新的文献求助10
7秒前
欢欢完成签到,获得积分10
7秒前
内向的飞松完成签到 ,获得积分10
8秒前
rosexu发布了新的文献求助30
8秒前
牧尔芙发布了新的文献求助10
8秒前
可爱的函函应助知名不具采纳,获得10
8秒前
小Q完成签到,获得积分10
8秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572