Deep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail Transit

计算机科学 深度学习 稳健性(进化) 图形 建筑 人工智能 城市轨道交通 流入 网络体系结构 数据挖掘 工程类 运输工程 计算机网络 理论计算机科学 基因 物理 机械 生物化学 艺术 视觉艺术 化学
作者
Jinlei Zhang,Chen Feng,Zhiyong Cui,Yinan Guo,Yadi Zhu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 7004-7014 被引量:146
标识
DOI:10.1109/tits.2020.3000761
摘要

Short-term passenger flow forecasting is an essential component in urban rail transit operation. Emerging deep learning models provide good insight into improving prediction precision. Therefore, we propose a deep learning architecture combining the residual network (ResNet), graph convolutional network (GCN), and long short-term memory (LSTM) (called "ResLSTM") to forecast short-term passenger flow in urban rail transit on a network scale. First, improved methodologies of the ResNet, GCN, and attention LSTM models are presented. Then, the model architecture is proposed, wherein ResNet is used to capture deep abstract spatial correlations between subway stations, GCN is applied to extract network topology information, and attention LSTM is used to extract temporal correlations. The model architecture includes four branches for inflow, outflow, graph-network topology, as well as weather conditions and air quality. To the best of our knowledge, this is the first time that air-quality indicators have been taken into account, and their influences on prediction precision quantified. Finally, ResLSTM is applied to the Beijing subway using three time granularities (10, 15, and 30 min) to conduct short-term passenger flow forecasting. A comparison of the prediction performance of ResLSTM with those of many state-of-the-art models illustrates the advantages and robustness of ResLSTM. Moreover, a comparison of the prediction precisions obtained for time granularities of 10, 15, and 30 min indicates that prediction precision increases with increasing time granularity. This study can provide subway operators with insight into short-term passenger flow forecasting by leveraging deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yayaya应助超级白昼采纳,获得10
刚刚
Gen_cexon发布了新的文献求助10
3秒前
3秒前
Firenze发布了新的文献求助10
4秒前
搜集达人应助T拐拐采纳,获得10
4秒前
4秒前
liuttinn完成签到,获得积分10
6秒前
6秒前
不可思宇完成签到,获得积分10
7秒前
害羞的盼海完成签到,获得积分10
7秒前
妄语完成签到 ,获得积分10
8秒前
Jj发布了新的文献求助10
8秒前
9秒前
xzy998应助超级白昼采纳,获得10
10秒前
11秒前
12秒前
14秒前
T拐拐发布了新的文献求助10
15秒前
听话的幼荷完成签到,获得积分10
18秒前
19秒前
20秒前
可爱的函函应助穿堂风采纳,获得10
21秒前
开朗白开水完成签到 ,获得积分10
21秒前
重要白山完成签到,获得积分20
22秒前
战战完成签到,获得积分10
23秒前
周凡淇发布了新的文献求助10
24秒前
25秒前
万能图书馆应助旺仔采纳,获得10
25秒前
边边发布了新的文献求助10
26秒前
yayaya应助超级白昼采纳,获得10
27秒前
zyzhnu完成签到,获得积分10
27秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
29秒前
29秒前
北方半仙完成签到 ,获得积分10
30秒前
Cai发布了新的文献求助10
30秒前
brwen完成签到,获得积分10
31秒前
简单的晓夏完成签到 ,获得积分10
32秒前
飞云完成签到,获得积分10
32秒前
陈曦发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162907
求助须知:如何正确求助?哪些是违规求助? 2813960
关于积分的说明 7902455
捐赠科研通 2473553
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187