Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices

压电 能量收集 可穿戴计算机 可穿戴技术 材料科学 可伸缩电子设备 纳米发生器 数码产品 机械能 机械工程 能量(信号处理) 计算机科学 纳米技术 电气工程 工程类 功率(物理) 嵌入式系统 物理 量子力学
作者
Honglei Zhou,Yue Zhang,Ye Qiu,Huaping Wu,Weiyang Qin,Yabin Liao,Yue Zhu-feng,Huanyu Cheng
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:168: 112569-112569 被引量:275
标识
DOI:10.1016/j.bios.2020.112569
摘要

Wearable and implantable bio-integrated electronics have started to gain momentum because of their essential role in improving the quality of life for various patients and healthy individuals. However, their continuous operation is often limited by traditional battery technologies with a limited lifespan, creating a significant challenge for their development. Thus, it is highly desirable to harvest biomechanical energies from human motion for self-powered bio-integrated functional devices. Piezoelectric energy harvesters are ideal candidates to achieve this goal by converting biomechanical energy to electric energy. Because of their applications on soft and highly deformable tissues of the human body, these devices also need to be mechanically flexible and stretchable, thus posing a significant challenge. Effective methods to address the challenge include the exploration of new stretchable piezoelectric materials (e.g., hybrid composite material) and stretchable structures (e.g., buckled shapes, serpentine mesh layouts, kirigami designs, among others). This review presents an overview of the recent developments in new intrinsically stretchable piezoelectric materials and rigid inorganic piezoelectric materials with novel stretchable structures for flexible and stretchable piezoelectric sensors and energy harvesters. Following the discussion of theoretical modeling of the piezoelectric materials to convert mechanical deformations into electrical signals, the representative applications of stretchable piezoelectric materials and structures in wearable and implantable devices are briefly summarized. The present limitations and future research directions of flexible and stretchable piezoelectric devices are then discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fane发布了新的文献求助30
1秒前
513发布了新的文献求助10
1秒前
谨慎长颈鹿完成签到,获得积分10
2秒前
天天快乐应助糖果风采纳,获得10
2秒前
cyrong应助lizzycoffee采纳,获得10
4秒前
4秒前
5秒前
myg8627发布了新的文献求助10
5秒前
Zzz完成签到,获得积分20
6秒前
6秒前
7秒前
科研通AI2S应助mary611采纳,获得10
7秒前
7秒前
老肥彭发布了新的文献求助10
8秒前
呼延香之完成签到,获得积分10
8秒前
8秒前
9秒前
贪玩豪发布了新的文献求助10
10秒前
大模型应助nini采纳,获得10
10秒前
科研通AI2S应助xaiohuihui采纳,获得10
10秒前
aiqiangyu发布了新的文献求助10
11秒前
12秒前
Crazyalien发布了新的文献求助10
12秒前
鳗鱼曼文发布了新的文献求助30
12秒前
13秒前
13秒前
陈老板发布了新的文献求助10
14秒前
Lucas应助yu采纳,获得10
15秒前
大模型应助马尼拉采纳,获得30
17秒前
深情的阿宇完成签到,获得积分20
18秒前
wb关注了科研通微信公众号
18秒前
19秒前
20秒前
20秒前
20秒前
21秒前
搜集达人应助鳗鱼曼文采纳,获得10
21秒前
不要碧莲完成签到,获得积分10
22秒前
刘jinkai发布了新的文献求助10
22秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133336
求助须知:如何正确求助?哪些是违规求助? 2784459
关于积分的说明 7766779
捐赠科研通 2439644
什么是DOI,文献DOI怎么找? 1296912
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771