已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulation and Peak Value Estimation of Non-Gaussian Wind Pressures Based on Johnson Transformation Model

峰度 高斯分布 数学 偏斜 高斯过程 赫米特多项式 应用数学 单调函数 计算机科学 统计物理学 统计 物理 数学分析 量子力学
作者
Fengbo Wu,Guoqing Huang,Min Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:146 (1) 被引量:33
标识
DOI:10.1061/(asce)em.1943-7889.0001697
摘要

The simulation and peak value estimation of non-Gaussian wind pressures are important to the structural and cladding design of the building. Due to its straightforwardness and accuracy, the moment-based Hermite polynomial model (HPM) has been widely used. However, its effective region for monotonicity is limited, resulting in its unsuitability for non-Gaussian processes whose skewness and kurtosis are out of the effective region. On the other hand, the Johnson transformation model (JTM) has attracted attention due to its larger effective region compared with that of the HPM. Nevertheless, the systematic study of its application to the simulation and peak value estimation of non-Gaussian wind pressures is less addressed. Specifically, its comparison with the HPM is not well discussed. In this study, a set of closed-form formulas to determine the relationship between correlation coefficients of the non-Gaussian process and those of the underlying Gaussian process was derived, and they facilitate a JTM-based simulation method for the non-Gaussian process. Analytical expressions for the non-Gaussian peak factor were developed. Furthermore, the JTM was systematically compared with the HPM in terms of the translation function, which helps to understand the ensuing performance evaluation on these two models in the simulation and peak value estimation based on the very long wind pressure data. Results showed that the JTM-based peak value estimation method performs well for wind pressures with weak to mild non-Gaussianity, even those beyond the effective region of the HPM, although it may provide slightly worse estimation for strong softening processes compared with the HPM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
华仔应助科研民工李采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
星辰大海应助kawangka采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
fafa发布了新的文献求助10
3秒前
琪琪发布了新的文献求助10
5秒前
ll完成签到 ,获得积分10
5秒前
QMint完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
10秒前
思源应助ppg123采纳,获得10
11秒前
12秒前
程林翰山发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
天空之云发布了新的文献求助10
15秒前
15秒前
17秒前
含蓄的静竹完成签到 ,获得积分10
18秒前
sssss完成签到,获得积分10
19秒前
冰兰阿托品完成签到 ,获得积分10
20秒前
睡个好觉发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713547
求助须知:如何正确求助?哪些是违规求助? 5216427
关于积分的说明 15271286
捐赠科研通 4865285
什么是DOI,文献DOI怎么找? 2611992
邀请新用户注册赠送积分活动 1562188
关于科研通互助平台的介绍 1519390