Simulation and Peak Value Estimation of Non-Gaussian Wind Pressures Based on Johnson Transformation Model

峰度 高斯分布 数学 偏斜 高斯过程 赫米特多项式 应用数学 单调函数 计算机科学 统计物理学 统计 物理 数学分析 量子力学
作者
Fengbo Wu,Guoqing Huang,Min Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:146 (1) 被引量:25
标识
DOI:10.1061/(asce)em.1943-7889.0001697
摘要

The simulation and peak value estimation of non-Gaussian wind pressures are important to the structural and cladding design of the building. Due to its straightforwardness and accuracy, the moment-based Hermite polynomial model (HPM) has been widely used. However, its effective region for monotonicity is limited, resulting in its unsuitability for non-Gaussian processes whose skewness and kurtosis are out of the effective region. On the other hand, the Johnson transformation model (JTM) has attracted attention due to its larger effective region compared with that of the HPM. Nevertheless, the systematic study of its application to the simulation and peak value estimation of non-Gaussian wind pressures is less addressed. Specifically, its comparison with the HPM is not well discussed. In this study, a set of closed-form formulas to determine the relationship between correlation coefficients of the non-Gaussian process and those of the underlying Gaussian process was derived, and they facilitate a JTM-based simulation method for the non-Gaussian process. Analytical expressions for the non-Gaussian peak factor were developed. Furthermore, the JTM was systematically compared with the HPM in terms of the translation function, which helps to understand the ensuing performance evaluation on these two models in the simulation and peak value estimation based on the very long wind pressure data. Results showed that the JTM-based peak value estimation method performs well for wind pressures with weak to mild non-Gaussianity, even those beyond the effective region of the HPM, although it may provide slightly worse estimation for strong softening processes compared with the HPM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕寄风发布了新的文献求助10
刚刚
三千港完成签到,获得积分10
1秒前
康康完成签到 ,获得积分10
1秒前
BAEKHYUNLUCKY发布了新的文献求助10
2秒前
天黑黑发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助布丁采纳,获得10
3秒前
3秒前
3秒前
老板娘完成签到 ,获得积分10
3秒前
3秒前
亚尔完成签到 ,获得积分10
4秒前
故意的如冬完成签到,获得积分10
4秒前
4秒前
现代的冰珍完成签到,获得积分10
4秒前
搜集达人应助酷炫觅松采纳,获得10
4秒前
司空博涛完成签到,获得积分10
5秒前
Yuanyuan发布了新的文献求助10
5秒前
JamesPei应助风趣的弘文采纳,获得10
6秒前
zhouleibio完成签到,获得积分10
6秒前
马良完成签到,获得积分10
7秒前
Orange应助ccmaxp采纳,获得10
7秒前
shunshun发布了新的文献求助10
7秒前
AUK关闭了AUK文献求助
7秒前
思源应助冷酷芷雪采纳,获得10
7秒前
Tian完成签到 ,获得积分10
8秒前
AAA电材哥发布了新的文献求助10
8秒前
8秒前
过期牛奶坏肚子完成签到,获得积分10
8秒前
学术小子发布了新的文献求助10
8秒前
8秒前
朱洛尘完成签到,获得积分10
9秒前
9秒前
CEJ发布了新的文献求助10
9秒前
9秒前
cqwswfl发布了新的文献求助10
9秒前
英俊的铭应助橘寄采纳,获得10
9秒前
阿仔爱学习完成签到,获得积分10
10秒前
Raymond应助洋洋洋耶采纳,获得10
10秒前
nnnnn发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530