Simulation and Peak Value Estimation of Non-Gaussian Wind Pressures Based on Johnson Transformation Model

峰度 高斯分布 数学 偏斜 高斯过程 赫米特多项式 应用数学 单调函数 计算机科学 统计物理学 统计 物理 数学分析 量子力学
作者
Fengbo Wu,Guoqing Huang,Min Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:146 (1) 被引量:25
标识
DOI:10.1061/(asce)em.1943-7889.0001697
摘要

The simulation and peak value estimation of non-Gaussian wind pressures are important to the structural and cladding design of the building. Due to its straightforwardness and accuracy, the moment-based Hermite polynomial model (HPM) has been widely used. However, its effective region for monotonicity is limited, resulting in its unsuitability for non-Gaussian processes whose skewness and kurtosis are out of the effective region. On the other hand, the Johnson transformation model (JTM) has attracted attention due to its larger effective region compared with that of the HPM. Nevertheless, the systematic study of its application to the simulation and peak value estimation of non-Gaussian wind pressures is less addressed. Specifically, its comparison with the HPM is not well discussed. In this study, a set of closed-form formulas to determine the relationship between correlation coefficients of the non-Gaussian process and those of the underlying Gaussian process was derived, and they facilitate a JTM-based simulation method for the non-Gaussian process. Analytical expressions for the non-Gaussian peak factor were developed. Furthermore, the JTM was systematically compared with the HPM in terms of the translation function, which helps to understand the ensuing performance evaluation on these two models in the simulation and peak value estimation based on the very long wind pressure data. Results showed that the JTM-based peak value estimation method performs well for wind pressures with weak to mild non-Gaussianity, even those beyond the effective region of the HPM, although it may provide slightly worse estimation for strong softening processes compared with the HPM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
研六六发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
傅以柳完成签到,获得积分10
6秒前
田柾国完成签到,获得积分20
6秒前
淡淡冬瓜发布了新的文献求助10
7秒前
9秒前
科研66666发布了新的文献求助10
10秒前
hhuajw完成签到,获得积分10
11秒前
sg完成签到,获得积分20
11秒前
yjw完成签到,获得积分10
14秒前
寂漉完成签到,获得积分10
14秒前
科研通AI2S应助hhuajw采纳,获得10
16秒前
张非凡完成签到 ,获得积分10
17秒前
腼腆的馒头完成签到,获得积分10
17秒前
莉莉完成签到,获得积分10
20秒前
21秒前
wnche完成签到,获得积分10
21秒前
21秒前
Ava应助研六六采纳,获得10
22秒前
23秒前
一二发布了新的文献求助10
25秒前
乐乐应助hll采纳,获得10
29秒前
zyyao发布了新的文献求助10
29秒前
31秒前
31秒前
大个应助tivyg'lk采纳,获得10
31秒前
Atlantis完成签到,获得积分10
32秒前
32秒前
33秒前
酷波er应助玛卡巴卡采纳,获得10
34秒前
小蘑菇应助zyyao采纳,获得10
34秒前
吴兰田发布了新的文献求助10
35秒前
030发布了新的文献求助10
35秒前
bobo发布了新的文献求助10
39秒前
无语啦完成签到,获得积分20
39秒前
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825