A method for underwater acoustic signal classification using convolutional neural network combined with discrete wavelet transform

卷积神经网络 计算机科学 水下 离散小波变换 人工智能 过度拟合 模式识别(心理学) 稳健性(进化) 小波 信号处理 语音识别 人工神经网络 小波变换 数字信号处理 基因 海洋学 地质学 生物化学 化学 计算机硬件
作者
Kyong-Il Kim,Myong-Il Pak,Bong-Pil Chon,Chun-Hyok Ri
出处
期刊:International Journal of Wavelets, Multiresolution and Information Processing [World Scientific]
卷期号:19 (04): 2050092-2050092 被引量:17
标识
DOI:10.1142/s0219691320500927
摘要

The detection and classification of underwater targets such as fish are one of the major tasks of the underwater acoustic signal processing and are very important for scientific, fisheries and ocean engineering and economic fields. The convolutional neural network (CNN) combined with the discrete wavelet transform (DWT) (namely CNN_DWT) not only reduces the data processing dimension of signals and the computational costs of the signal analysis, but also improves the performance of target detection and classification. This paper proposes a new CNN to classify the images that reflected the underwater acoustic signal in the database that is made up of the scalogram of underwater acoustic signals. Also, in order to attain greater accuracy and comparable efficiency to the spatial domain processing, we convert the data to the wavelet domain. Also, we propose a deep learning method for the classification of underwater acoustic signals using the new CNN combined with DWT. Next, through the simulation experiment, we evaluate our new method for underwater acoustic signal classification using the CNN combined with DWT, by comparing with classical methods. Comparing the proposed method to spatial domain CNN and classical methods, the experimental results reveal a substantial increment in classification accuracy and noise robustness. And the learning curves show that the proposed CNN_DWT does not generate the overfitting problem and its generalization ability is high. The proposed CNN_DWT improves the classification accuracy and convergence of underwater acoustic signals than the classical CNNs. The noise robustness of the proposed CNN_DWT is higher than those of classical CNNs and back-propagation neural networks (BPNNs) for the classification of underwater acoustic signals. Experimental results show that the classification performance of new CNN combined with DWT is higher than those of classical CNNs and BPNNs for the classification of underwater acoustic signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助阿巴阿巴采纳,获得10
1秒前
朝晖夕阴完成签到,获得积分10
1秒前
蕾蕾发布了新的文献求助30
1秒前
wanci应助江屿采纳,获得10
1秒前
2秒前
酷炫的八宝粥完成签到,获得积分10
2秒前
2秒前
在水一方应助成环醚采纳,获得10
3秒前
斯文败类应助绝尘采纳,获得10
3秒前
iking666发布了新的文献求助10
3秒前
烟花应助114514采纳,获得10
3秒前
科研通AI5应助HJJHJH采纳,获得10
4秒前
4秒前
4秒前
tree发布了新的文献求助10
5秒前
宋百言发布了新的文献求助10
6秒前
liyi发布了新的文献求助10
6秒前
英俊的铭应助许起眸采纳,获得10
6秒前
梵高的向日葵完成签到,获得积分10
7秒前
英姑应助ll2925203采纳,获得10
8秒前
实验好难应助Passionfruit采纳,获得10
8秒前
标致博完成签到,获得积分10
9秒前
赘婿应助1+1采纳,获得10
9秒前
科研通AI5应助Jeffry采纳,获得30
10秒前
碰壁生灰完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
liyi完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
fusheng完成签到,获得积分10
13秒前
bluesky发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
yly完成签到,获得积分20
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400