Multiple objective optimization Applied to Speech enhancement problem

语音增强 可理解性(哲学) 计算机科学 降噪 语音识别 噪音(视频) 粒子群优化 噪声测量 算法 人工智能 认识论 图像(数学) 哲学
作者
Said Ouznadji,Djamal Chaabane,Messaoud Thameri
出处
期刊:Rairo-operations Research [EDP Sciences]
卷期号:54 (6): 1555-1572
标识
DOI:10.1051/ro/2019106
摘要

Enhancement of speech corrupted by broadband noise is subject of interest in many applications. For several years, the investigation of methods of denoising the vocal signal has yielded very satisfactory results, but certain problems and questions still remain. The term speech quality in speech enhancement is associated with clarity and intelligibility. So, one of these issues is to reach a compromise between noise reduction, signal distortion and musical noise. In this paper, we studied one of the classical techniques based on the spectral subtraction developed by Boll and improved by Berouti where two parameters α and β to control the effects of the distortion and the musical noise are introduced. However, the choice on these parameters ( α and β ) remains empirical. Our works is to find a compromise between these two parameters to obtain an optimal solution depending on the environment, the unknown noise and its level. Moreover, we propose in this paper, an algorithm based on bi-objective approach precisely Particle Swarm Optimization (PSO) technique in association with speech enhancement technique proposed by Berouti et al. Comparative results show that the performance of our proposed method with several types of noise, depending on the environment and on various noise levels, are better than those of spectral subtraction methods of Boll or Berouti.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁甲小宝发布了新的文献求助10
4秒前
落后的觅松完成签到,获得积分10
5秒前
6秒前
初九完成签到,获得积分10
8秒前
9秒前
10秒前
xiw完成签到,获得积分10
12秒前
15秒前
大爱仙尊发布了新的文献求助10
16秒前
Jasper应助wenxiang采纳,获得10
16秒前
zzyl完成签到,获得积分10
17秒前
碗碗完成签到,获得积分10
18秒前
19秒前
aa发布了新的文献求助10
22秒前
Radiance完成签到,获得积分10
23秒前
11发布了新的文献求助10
24秒前
小孙完成签到,获得积分10
24秒前
沉默念蕾发布了新的文献求助10
25秒前
xvping完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
嘘唏应助azx采纳,获得10
32秒前
科研通AI2S应助森气采纳,获得10
32秒前
七柚发布了新的文献求助10
32秒前
舒服的远望完成签到,获得积分10
33秒前
木林森林木完成签到 ,获得积分10
33秒前
唐僧肉臊子面完成签到,获得积分10
34秒前
酆百招csa完成签到,获得积分10
37秒前
精明叫兽完成签到,获得积分10
38秒前
39秒前
天天完成签到,获得积分10
41秒前
神勇的薯片完成签到,获得积分10
42秒前
43秒前
44秒前
ding应助生动依白采纳,获得10
44秒前
jw发布了新的文献求助10
45秒前
李爱国应助张瑞雪采纳,获得10
46秒前
弹棉花完成签到,获得积分10
46秒前
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079