Multiple objective optimization Applied to Speech enhancement problem

语音增强 可理解性(哲学) 计算机科学 降噪 语音识别 噪音(视频) 粒子群优化 噪声测量 算法 人工智能 认识论 图像(数学) 哲学
作者
Said Ouznadji,Djamal Chaabane,Messaoud Thameri
出处
期刊:Rairo-operations Research [EDP Sciences]
卷期号:54 (6): 1555-1572
标识
DOI:10.1051/ro/2019106
摘要

Enhancement of speech corrupted by broadband noise is subject of interest in many applications. For several years, the investigation of methods of denoising the vocal signal has yielded very satisfactory results, but certain problems and questions still remain. The term speech quality in speech enhancement is associated with clarity and intelligibility. So, one of these issues is to reach a compromise between noise reduction, signal distortion and musical noise. In this paper, we studied one of the classical techniques based on the spectral subtraction developed by Boll and improved by Berouti where two parameters α and β to control the effects of the distortion and the musical noise are introduced. However, the choice on these parameters ( α and β ) remains empirical. Our works is to find a compromise between these two parameters to obtain an optimal solution depending on the environment, the unknown noise and its level. Moreover, we propose in this paper, an algorithm based on bi-objective approach precisely Particle Swarm Optimization (PSO) technique in association with speech enhancement technique proposed by Berouti et al. Comparative results show that the performance of our proposed method with several types of noise, depending on the environment and on various noise levels, are better than those of spectral subtraction methods of Boll or Berouti.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhemers完成签到,获得积分10
刚刚
111发布了新的文献求助10
刚刚
1秒前
爱静静应助怡然的莫茗采纳,获得10
2秒前
3秒前
科研通AI5应助清秀的以云采纳,获得30
3秒前
李健的粉丝团团长应助xx采纳,获得10
5秒前
大豪子发布了新的文献求助30
5秒前
李繁蕊发布了新的文献求助10
5秒前
9秒前
9秒前
9秒前
9秒前
橘柚完成签到 ,获得积分10
10秒前
zmmmm发布了新的文献求助10
10秒前
领导范儿应助温言采纳,获得10
10秒前
思源应助OvO采纳,获得10
12秒前
迷糊发布了新的文献求助30
13秒前
LY发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
KimJongUn完成签到,获得积分10
14秒前
16秒前
16秒前
zy完成签到,获得积分10
17秒前
开心果子发布了新的文献求助10
17秒前
云痴子完成签到,获得积分10
18秒前
SciGPT应助粥粥采纳,获得10
18秒前
18秒前
18秒前
19秒前
苏源完成签到,获得积分10
19秒前
wu关闭了wu文献求助
19秒前
19秒前
20秒前
20秒前
21秒前
21秒前
21秒前
Shawn完成签到,获得积分10
22秒前
yltstt完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808