Multiple objective optimization Applied to Speech enhancement problem

语音增强 可理解性(哲学) 计算机科学 降噪 语音识别 噪音(视频) 粒子群优化 噪声测量 算法 人工智能 认识论 图像(数学) 哲学
作者
Said Ouznadji,Djamal Chaabane,Messaoud Thameri
出处
期刊:Rairo-operations Research [EDP Sciences]
卷期号:54 (6): 1555-1572
标识
DOI:10.1051/ro/2019106
摘要

Enhancement of speech corrupted by broadband noise is subject of interest in many applications. For several years, the investigation of methods of denoising the vocal signal has yielded very satisfactory results, but certain problems and questions still remain. The term speech quality in speech enhancement is associated with clarity and intelligibility. So, one of these issues is to reach a compromise between noise reduction, signal distortion and musical noise. In this paper, we studied one of the classical techniques based on the spectral subtraction developed by Boll and improved by Berouti where two parameters α and β to control the effects of the distortion and the musical noise are introduced. However, the choice on these parameters ( α and β ) remains empirical. Our works is to find a compromise between these two parameters to obtain an optimal solution depending on the environment, the unknown noise and its level. Moreover, we propose in this paper, an algorithm based on bi-objective approach precisely Particle Swarm Optimization (PSO) technique in association with speech enhancement technique proposed by Berouti et al. Comparative results show that the performance of our proposed method with several types of noise, depending on the environment and on various noise levels, are better than those of spectral subtraction methods of Boll or Berouti.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仙女的小可爱完成签到 ,获得积分10
1秒前
priss111发布了新的文献求助10
1秒前
1秒前
wuxunxun2015发布了新的文献求助10
2秒前
我劝告了风完成签到,获得积分10
2秒前
Akim应助葡萄采纳,获得10
2秒前
2秒前
2秒前
liupangzi发布了新的文献求助10
3秒前
3秒前
Arhtur发布了新的文献求助10
3秒前
小盒完成签到,获得积分10
4秒前
英俊的铭应助活泼凡雁采纳,获得10
4秒前
紫易完成签到,获得积分20
4秒前
haoyunlai完成签到,获得积分10
4秒前
烟花应助白英采纳,获得10
5秒前
5秒前
羊羊完成签到,获得积分10
5秒前
充电宝应助体贴绝音采纳,获得10
5秒前
含灵巨贼发布了新的文献求助10
5秒前
6秒前
6秒前
尊敬凝荷完成签到,获得积分10
6秒前
applegood发布了新的文献求助10
6秒前
小鹿完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
xia完成签到,获得积分10
8秒前
蓝莓酥study完成签到,获得积分10
8秒前
鳗鱼不尤完成签到,获得积分10
9秒前
李萍萍完成签到,获得积分10
9秒前
zzz完成签到 ,获得积分10
9秒前
9秒前
SJC给SJC的求助进行了留言
10秒前
Twonej应助可爱的芷云采纳,获得30
10秒前
jiaojia完成签到,获得积分10
10秒前
11秒前
ccc_y关注了科研通微信公众号
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700