摘要
Chapter 46 The Pneumococcus: Population Biology and Virulence Mark C. Enright, Mark C. Enright Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, Old Medical School Building, St. Mary's Hospital, Norfolk Place, London, United KingdomSearch for more papers by this author Mark C. Enright, Mark C. Enright Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, Old Medical School Building, St. Mary's Hospital, Norfolk Place, London, United KingdomSearch for more papers by this author Book Editor(s):Fernando Baquero, Fernando Baquero Department of Microbiology, Ramón y Cajal University Hospital and Laboratory for Microbial Evolution, Center for Astrobiology (CAB-INTA-CSIC), Madrid, SpainSearch for more papers by this authorCésar Nombela, César Nombela Department of Microbiology II, School of Pharmacy, Universidad Complutense de Madrid, Madrid, SpainSearch for more papers by this authorGail H. Cassell, Gail H. Cassell Eli Lilly and Company, Indianapolis, IndianaSearch for more papers by this authorJosé A. Gutiérrez-Fuentes, José A. Gutiérrez-Fuentes Fundación Lilly, Madrid, SpainSearch for more papers by this author First published: 19 October 2007 https://doi.org/10.1128/9781555815639.ch46 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Streptococcus pneumoniae disease has been a major cause of mortality throughout human history, causing serious invasive diseases such as pneumonia, bacteremia, septicemia, and meningitis. In common with other bacteria colonizing the nasopharynx, S. pneumoniae rarely causes invasive disease despite its prevalence in the population. The precise regulation of virulence factors in pneumococci is essential as the organism changes from colonizing the nasopharynx and surviving in and invading the lung before entering the bloodstream and cerebrospinal fluid. Studies have found 13 putative two-component signal-transduction systems in S. pneumoniae, and early studies suggest that these systems regulate expression of virulence loci in response to environmental stimuli as has been found in other bacterial pathogens. The S. pneumoniae capsule is an obvious feature of the organism when viewed on blood agar, and it serves a key role in both virulence and immune evasion. Increasing rates of antibiotic resistance have been found in studies in many countries, prompting the most alarmist of commentators to speculate about a return to the preantibiotic era. The pneumococcal capsular polysaccharide was the first virulence factor identified in the species. Pneumococcal capsular polysaccharide genes are not always reliable markers of the strain genetic background, as early studies using multilocus enzyme electrophoresis (MLEE) showed. MLEE examines allelic diversity at a number of housekeeping gene loci by comparing the mobility of their gene products on starch gels. The development of automated DNA sequencing allowed the development of multilocus sequence typing (MLST), which is based on the sound evolutionary theory underlying MLEE. References Adegbola, R. A., P. C. Hill, O. Secka, U. N. Ikumapayi, G. Lahai, B. M. Greenwood, et al. 2006. Serotype and antimicrobial susceptibility patterns of isolates of Streptococcus pneumoniae causing invasive disease in The Gambia 1996–2003. Trop. Med. Int. Health. 11 (7): 1128–1135. 10.1111/j.1365-3156.2006.01652.x CASPubMedWeb of Science®Google Scholar Austrian, R., and J. Gold. 1964. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann. Intern. Med. 60: 759–776. 10.7326/0003-4819-60-5-759 CASPubMedWeb of Science®Google Scholar Barber, M., and M. Rozwadowska-Dowzenko. 1948. Infection by penicillin-resistant staphylococci. Lancet. ii: 641–644. 10.1016/S0140-6736(48)92166-7 CASGoogle Scholar Bentley, S. D., D. M. Aanensen, A. Mavroidi, D. Saunders, E. Rabbinowitsch, M. Collins, et al. 2006. Genetic analyses of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2: e31. 10.1371/journal.pgen.0020031 CASPubMedWeb of Science®Google Scholar Berry, A. M., and J. C. Paton. 2000. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68: 133–140. 10.1128/IAI.68.1.133-140.2000 CASPubMedWeb of Science®Google Scholar Berry, A. M., and J. C. Paton. 1996. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae . Infect. Immun. 64: 5255–5262. 10.1128/IAI.64.12.5255-5262.1996 CASPubMedWeb of Science®Google Scholar Black, S., H. Shinefield, B. Fireman, E. Lewis, P. Ray, J. R. Hansen, et al. 2000. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 19: 187–195. 10.1097/00006454-200003000-00003 CASPubMedWeb of Science®Google Scholar Brueggemann, A. B., D. T. Griffiths, E. Meats, T. Peto, D. W. Crook, and B. G. Spratt. 2003. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotypeand clone-specific differences in invasive disease potential. J. Infect. Dis. 187: 1424–1432. 10.1086/374624 CASPubMedWeb of Science®Google Scholar Canvin, J. R., A. P. Marvin, M. Sivakumaran, J. C. Paton, G. J. Boulnois, P. W. Andrew, et al. 1995. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J. Infect. Dis. 172: 119–123. 10.1093/infdis/172.1.119 CASPubMedWeb of Science®Google Scholar Centers for Disease Control and Prevention (CDC). 2000. Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbid. Mortal. Wkly. Rep. Recomm. Rep. 49: 1–35. PubMedGoogle Scholar Centers for Disease Control and Prevention (CDC). 1997. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbid. Mortal. Wkly. Rep. Reccom. Rep. 46: 1–24. PubMedGoogle Scholar Coffey, T. J., C. G. Dowson, M. Daniels, and B. G. Spratt. 1995. Genetics and molecular biology of beta-lactam-resistant pneumococci. Microb. Drug Resist. 1: 29–34. 10.1089/mdr.1995.1.29 CASPubMedWeb of Science®Google Scholar Coffey, T. J., C. G. Dowson, M. Daniels, J. Zhou, C. Martin, B. G. Spratt, et al. 1991. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae . Mol. Microbiol. 5: 2255–2260. 10.1111/j.1365-2958.1991.tb02155.x CASPubMedWeb of Science®Google Scholar Coffey, T. J., M. C. Enright, M. Daniels, J. K. Morona, R. Morona, W. Hryniewicz, et al. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae . Mol. Microbiol. 27: 73–83. 10.1046/j.1365-2958.1998.00658.x CASPubMedWeb of Science®Google Scholar Dowson, C. G., A. Hutchison, and B. G. Spratt. 1989. Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2B of a penicillin-resistant South African isolate of Streptococcus pneumoniae . Mol. Microbiol. 3: 95–102. 10.1111/j.1365-2958.1989.tb00108.x CASPubMedWeb of Science®Google Scholar Dziejman, M., and J. J. Mekalanos. 1995. Two-component signal transduction and its role in the expression of bacterial virulence, p. 305–317. In J. A. Hoch and T. J. Silhavy (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington DC. 10.1128/9781555818319.ch19 Google Scholar EARSS. 2004. European Antimicrobial Resistance Surveillance System Annual Report. Google Scholar Enright, M., and B. Spratt. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 144: 3049–3060. 10.1099/00221287-144-11-3049 CASPubMedWeb of Science®Google Scholar Enright, M. C., and B. G. Spratt. 1999. Multilocus sequence typing. Trends Microbiol. 7: 482–487. 10.1016/S0966-842X(99)01609-1 CASPubMedWeb of Science®Google Scholar Eskola, J., T. Kilpi, A. Palmu, J. Jokinen, J. Haapakoski, E. Herva, et al. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344: 403–409. 10.1056/NEJM200102083440602 CASPubMedWeb of Science®Google Scholar Feikin, D. R., and K. P. Klugman. 2002. Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin. Infect. Dis. 35: 547–555. 10.1086/341896 PubMedWeb of Science®Google Scholar Feil, E. J., B. C. Li, D. M. Aanensen, W. P. Hanage, and B. G. Spratt. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multi-locus sequence typing data. J. Bacteriol. 186: 1518–1530. 10.1128/JB.186.5.1518-1530.2004 CASPubMedWeb of Science®Google Scholar Feil, E. J., M. C. Maiden, M. Achtman, and B. G. Spratt. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis . Mol. Biol. Evol. 16: 1496–1502. 10.1093/oxfordjournals.molbev.a026061 CASPubMedWeb of Science®Google Scholar Feil, E. J., J. M. Smith, M. C. Enright, and B. G. Spratt. 2000. Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics. 154: 1439–1450. CASPubMedWeb of Science®Google Scholar Golden, R. L. 1992. Osler's legacy: the centennial of The Principles and Practice of Medicine. Ann. Intern. Med. 116: 255–260. 10.7326/0003-4819-116-3-255 CASPubMedWeb of Science®Google Scholar Hager, W. D., and P. S. McDaniel. 1983. Treatment of serious obstetric and gynecologic infections with cefoxitin. J. Reprod. Med. 28: 337–340. CASPubMedWeb of Science®Google Scholar Hanage, W. P., K. Auranen, R. Syrjanen, E. Herva, P. H. Makela, T. Kilpi, et al. 2004. Ability of pneumococcal serotypes and clones to cause acute otitis media: implications for the prevention of otitis media by conjugate vaccines. Infect. Immun. 72: 76–81. 10.1128/IAI.72.1.76-81.2004 CASPubMedWeb of Science®Google Scholar Hausdorff, W. P., J. Bryant, P. R. Paradiso, and G. R. Siber. 2000. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use. Part I. Clin. Infect. Dis. 30: 100–121. 10.1086/313608 CASPubMedWeb of Science®Google Scholar Hausdorff, W. P., G. Siber, and P. R. Paradiso. 2001. Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet. 357: 950–952. 10.1016/S0140-6736(00)04222-7 CASPubMedWeb of Science®Google Scholar Jacobs, M. R., H. J. Koornhof, R. M. Robins-Browne, C. M. Stevenson, Z. A. Vermaak, I. Freiman, et al. 1978. Emergence of multiply resistant pneumococci. N. Engl. J. Med. 299: 735–740. 10.1056/NEJM197810052991402 CASPubMedWeb of Science®Google Scholar Lange, R., C. Wagner, A. de Saizieu, N. Flint, J. Molnos, M. Stieger, et al. 1993. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae . Gene. 237: 223–234. 10.1016/S0378-1119(99)00266-8 Web of Science®Google Scholar Lopez, A. D., C. D. Mathers, M. Ezzati, D. T. Jamison, and C. J. Murray. 2006. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 367: 1747–1757. 10.1016/S0140-6736(06)68770-9 PubMedWeb of Science®Google Scholar Lund, E., and J. Henrichsen. 1978. Laboratory diagnosis, serology and epidemiology of Streptococcus pneumoniae . Methods Microbiol. 12: 241–262. 10.1016/S0580-9517(08)70365-9 Google Scholar Maiden, M. C., J. A., Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin, et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA. 95: 3140–3145. 10.1073/pnas.95.6.3140 CASPubMedWeb of Science®Google Scholar Manco, S., F. Hernon, H. Yesilkaya, J. C. Paton, P. W. Andrew, and A. Kadioglu. 2006. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect. Immun. 74: 4014–4020. 10.1128/IAI.01237-05 CASPubMedWeb of Science®Google Scholar McDougal, L. K., R. Facklam, M. Reeves, S. Hunter, J. M. Swenson, B. C. Hill, et al. 2001. Analysis of multiply antimicrobial-resistant isolates of Streptococcus pneumoniae from the United States. Antimicrob. Agents Chemother. 36: 2176–2184. 10.1128/AAC.36.10.2176 Web of Science®Google Scholar McGee, L., L. McDougal, J. Zhou, B. G. Spratt, F. C. Tenover, R. George, et al. 2001. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J. Clin. Microbiol. 39: 2565–2571. 10.1128/JCM.39.7.2565-2571.2001 CASPubMedWeb of Science®Google Scholar Meats, E., A. B. Brueggemann, M. C. Enright, K. Sleeman, D. T. Griffiths, D. W. Crook, et al. 2003. Stability of serotypes during nasopharyngeal carriage of Streptococcus pneumoniae . J. Clin. Microbiol. 41: 386–392. 10.1128/JCM.41.1.386-392.2003 PubMedWeb of Science®Google Scholar Mitchell, T. J. 2000. Virulence factors and the pathogenesis of disease caused by Streptococcus pneumoniae . Res. Microbiol. 151: 413–419. 10.1016/S0923-2508(00)00175-3 CASPubMedWeb of Science®Google Scholar Moxon, E. R., and J. S. Kroll. 1990. The role of bacterial polysaccharide capsules as virulence factors. Curr. Top. Microbiol. Immunol. 150: 65–85. 10.1007/978-3-642-74694-9_4 CASPubMedWeb of Science®Google Scholar Mufson, M. A., D. M. Kruss, R. E. Wasil, and W. I. Metzger. 1974. Capsular types and outcome of bacteremic pneumococcal disease in the antibiotic era. Arch. Intern. Med. 134: 505–510. 10.1001/archinte.1974.00320210115016 CASPubMedWeb of Science®Google Scholar Munoz, R., T. J. Coffey, M. Daniels, C. G. Dowson, G. Laible, J. Casal, et al. 1991. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae . J. Infect. Dis. 164: 302–306. 10.1093/infdis/164.2.302 CASPubMedWeb of Science®Google Scholar Oppenheim, B., H. J. Koornhof, and R. Austrian. 1986. Antibiotic-resistant pneumococcal disease in children at Baragwanath Hospital, Johannesburg. Pediatr. Infect. Dis. 5: 520–524. 10.1097/00006454-198609000-00006 CASPubMedWeb of Science®Google Scholar Paradisi, F., G. Corti, and R. Cinelli. 2001. Streptococcus pneumoniae as an agent of nosocomial infection: treatment in the era of penicillin-resistant strains. Clin. Microbiol. Infect. 7 (Suppl 4): 34–42. 10.1046/j.1469-0691.2001.00056.x PubMedGoogle Scholar Pasteur, L. 1881. Note sur la maladie nouvelle provoque par la salive d'un enfant mort de la rage. Bull. Acad. Méd. 10: 94–103. Google Scholar Schuchat, A., K. Robinson, J. D. Wenger, L. H. Harrison, M. Farley, A. L. Reingold, et al. 1997. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N. Engl. J. Med. 337: 970–976. 10.1056/NEJM199710023371404 CASPubMedWeb of Science®Google Scholar Sibold, C., J. Wang, J. Henrichsen, and R. Hakenbeck. 1992. Genetic relationships of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect. Immun. 60: 4119–4126. 10.1128/IAI.60.10.4119-4126.1992 CASPubMedWeb of Science®Google Scholar Smith, J. M., C. G. Dowson, and B. G. Spratt. 1991. Localized sex in bacteria. Nature. 349: 29–31. 10.1038/349029a0 CASPubMedWeb of Science®Google Scholar Smith, J. M., N. H. Smith, M. O'Rourke, and B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA. 90: 4384–4388. 10.1073/pnas.90.10.4384 CASPubMedWeb of Science®Google Scholar Spratt, B. G., and B. M. Greenwood. 2000. Prevention of pneumococcal disease by vaccination: does serotype replacement matter? Lancet. 356: 1210–1211. 10.1016/S0140-6736(00)02779-3 CASPubMedWeb of Science®Google Scholar Standish, A. J., U. H. Stroeher, and J. C. Paton. 2005. The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae . Proc. Natl. Acad. Sci. USA. 102: 7701–7706. 10.1073/pnas.0409377102 CASPubMedWeb of Science®Google Scholar Sternberg, G. M. 1881. A fatal form of septicaemia in the rabbit, produced by subcutaneous injection of human saliva. An experimental research. Natl. Board Health Bull. 2: 781–783. Google Scholar Syrjanen, R. K., T. M. Kilpi, T. H. Kaijalainen, E. E. Herva, and A. K. Takala. 2001. Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J. Infect. Dis. 184: 451–459. 10.1086/322048 CASPubMedWeb of Science®Google Scholar Throup, J. P., K. K. Koretke, A. P. Bryant, K. A. Ingraham, A. F. Chalker, Y. Ge, et al. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae . Mol. Microbiol. 35: 566–576. 10.1046/j.1365-2958.2000.01725.x CASPubMedWeb of Science®Google Scholar Tilghman, R. C., and M. Finland. 1937. Clinical significance of bacteremia in pneumococcal pneumonia. Arch. Intern. Med. 59: 602–619. 10.1001/archinte.1937.00170200044004 Web of Science®Google Scholar Tilley, S. J., E. V. Orlova, R. J. Gilbert, P. W. Andrew, and H. R. Saibil. 2005. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell. 121: 247–256. 10.1016/j.cell.2005.02.033 CASPubMedWeb of Science®Google Scholar Weiser, J. N., D. Bae, C. Fasching, R. W. Scamurra, A. J. Ratner, and E. N. Janoff. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA. 100: 4215–4220. 10.1073/pnas.0637469100 CASPubMedWeb of Science®Google Scholar Zhou, J., M. C. Enright, and B. G. Spratt. 2000. Identification of the major Spanish clones of penicillin-resistant pneumococci via the Internet using multilocus sequence typing. J. Clin. Microbiol. 38: 977–986. 10.1128/JCM.38.3.977-986.2000 CASPubMedWeb of Science®Google Scholar Evolutionary Biology of Bacterial and Fungal Pathogens ReferencesRelatedInformation