Locating events with a sparse network of regional arrays

方位角 椭球体 椭圆 先验与后验 计算机科学 区间(图论) 大地测量学 约束(计算机辅助设计) 置信区间 时间限制 算法 数据挖掘 地质学 统计 数学 几何学 认识论 组合数学 哲学 法学 政治学
作者
Steven R. Bratt,Thomas C. Bache
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:78 (2): 780-798 被引量:70
标识
DOI:10.1785/bssa0780020780
摘要

Abstract An automated procedure for locating regional seismic events with a network including arrays and single element seismometers is described. The method incorporates backazimuth estimates, arrival-time data, and associated uncertainties into a least-squares-inverse location algorithm. The formulation is essentially that of Jordan and Sverdrup extended to incorporate azimuth data. This technique allows the use of both a priori and a posteriori information about data uncertainties to compute confidence ellipsoids for location estimates. This is important for obtaining realistic confidence ellipsoids for solutions based on few data. It also permits a refinement of the confidence ellipsoid calculations as experience accumulates for events in a particular area. Small arrays like NORESS in Norway provide accurate estimates for the backazimuth of regional phases. These azimuth data provide a strong constraint on the location of events detected by a small number of stations. The strength of the constraint depends on the geometry, and in some situations azimuth data are as important as arrival-time data. Synthetic examples illustrating this are given for a network including two arrays. Actual data from the NORESS array in southern Norway and the FINESA array near Helsinki, Finland, are presented to demonstrate the use of the location technique. Most of the events studied are mine blasts for which there are highly accurate, independent locations. Comparing one-array and two-array locations and their confidence ellipses with these independent locations provides a preliminary validation of our estimates of the (signal-dependent) a priori arrival-time and azimuth variances, and demonstrates the effectiveness of our location procedure for a sparse network of regional arrays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
颛颛完成签到 ,获得积分10
1秒前
不安钢铁侠完成签到,获得积分10
1秒前
学术z完成签到,获得积分10
1秒前
小二郎应助yty采纳,获得10
1秒前
神帅酷哥完成签到,获得积分10
3秒前
3秒前
ljw完成签到,获得积分10
3秒前
xzy发布了新的文献求助20
3秒前
3秒前
守夜人发布了新的文献求助10
4秒前
4秒前
4秒前
珲雯发布了新的文献求助10
5秒前
5秒前
德尔塔捱斯完成签到,获得积分10
5秒前
小夏完成签到 ,获得积分0
6秒前
luuuuuu完成签到,获得积分10
6秒前
太阳alright完成签到,获得积分10
6秒前
雨辰发布了新的文献求助10
7秒前
在水一方应助lai采纳,获得10
7秒前
Yiiimmmwang完成签到,获得积分20
7秒前
FashionBoy应助小田心采纳,获得10
7秒前
Orange应助芳芳采纳,获得10
8秒前
汉堡包应助斯文黎云采纳,获得10
8秒前
通~发布了新的文献求助10
9秒前
qifeng完成签到,获得积分10
9秒前
屹舟发布了新的文献求助10
9秒前
宇文数学完成签到 ,获得积分10
10秒前
10秒前
爆米花应助大方嵩采纳,获得10
10秒前
姚文超发布了新的文献求助10
11秒前
11秒前
自由的寒香完成签到 ,获得积分10
11秒前
研友_LJQ4o8完成签到,获得积分10
12秒前
lkc发布了新的文献求助10
12秒前
12秒前
雨辰完成签到,获得积分10
12秒前
卫卫完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794