Locating events with a sparse network of regional arrays

方位角 椭球体 椭圆 先验与后验 计算机科学 区间(图论) 大地测量学 约束(计算机辅助设计) 置信区间 时间限制 算法 数据挖掘 地质学 统计 数学 几何学 认识论 组合数学 哲学 法学 政治学
作者
Steven R. Bratt,Thomas C. Bache
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:78 (2): 780-798 被引量:70
标识
DOI:10.1785/bssa0780020780
摘要

Abstract An automated procedure for locating regional seismic events with a network including arrays and single element seismometers is described. The method incorporates backazimuth estimates, arrival-time data, and associated uncertainties into a least-squares-inverse location algorithm. The formulation is essentially that of Jordan and Sverdrup extended to incorporate azimuth data. This technique allows the use of both a priori and a posteriori information about data uncertainties to compute confidence ellipsoids for location estimates. This is important for obtaining realistic confidence ellipsoids for solutions based on few data. It also permits a refinement of the confidence ellipsoid calculations as experience accumulates for events in a particular area. Small arrays like NORESS in Norway provide accurate estimates for the backazimuth of regional phases. These azimuth data provide a strong constraint on the location of events detected by a small number of stations. The strength of the constraint depends on the geometry, and in some situations azimuth data are as important as arrival-time data. Synthetic examples illustrating this are given for a network including two arrays. Actual data from the NORESS array in southern Norway and the FINESA array near Helsinki, Finland, are presented to demonstrate the use of the location technique. Most of the events studied are mine blasts for which there are highly accurate, independent locations. Comparing one-array and two-array locations and their confidence ellipses with these independent locations provides a preliminary validation of our estimates of the (signal-dependent) a priori arrival-time and azimuth variances, and demonstrates the effectiveness of our location procedure for a sparse network of regional arrays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一枚研究僧应助LN采纳,获得20
2秒前
3秒前
3秒前
倩青春发布了新的文献求助10
6秒前
123完成签到,获得积分10
6秒前
Choi完成签到,获得积分10
7秒前
可乐应助木子采纳,获得10
7秒前
天天快乐应助冷静新烟采纳,获得10
7秒前
土豆完成签到,获得积分10
8秒前
8秒前
Owen应助木子采纳,获得10
10秒前
伍小颖酱发布了新的文献求助10
10秒前
11秒前
菓小柒完成签到 ,获得积分10
12秒前
mmlikeu发布了新的文献求助10
13秒前
jin发布了新的文献求助10
15秒前
7t1n9发布了新的文献求助10
15秒前
小眼睛发布了新的文献求助10
16秒前
科研通AI2S应助自由隶采纳,获得10
17秒前
Cc发布了新的文献求助10
17秒前
19秒前
科研通AI2S应助伍小颖酱采纳,获得10
19秒前
194711发布了新的文献求助10
19秒前
毛豆爸爸应助vision0000采纳,获得20
21秒前
欣喜的斌完成签到,获得积分20
25秒前
幽默丹寒发布了新的文献求助10
25秒前
伍小颖酱完成签到,获得积分10
27秒前
标致曼荷完成签到,获得积分20
28秒前
28秒前
qweerrtt完成签到,获得积分10
29秒前
Binniwell发布了新的文献求助10
29秒前
31秒前
贰鸟应助LN采纳,获得20
32秒前
32秒前
33秒前
34秒前
jiu发布了新的文献求助10
37秒前
大模型应助sxy采纳,获得10
39秒前
39秒前
淡淡的若冰应助醉熏的井采纳,获得10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094