再分配(选举)
热力学
杂质
晶体生长
扩散
区域熔化
稳态(化学)
材料科学
俘获
热平衡
非平衡态热力学
Crystal(编程语言)
动能
热的
化学
化学物理
经典力学
物理化学
物理
生物
政治
复合材料
有机化学
计算机科学
程序设计语言
法学
生态学
政治学
摘要
A microscopic model for impurity uptake at a sharp crystal-liquid interface during alloy solidification is presented in terms of the bulk properties of the liquid and solid phases. The results for stepwise growth and continuous growth at the same interface velocity differ quantitatively but exhibit the same qualitative features. A transition from equilibrium segregation to complete solute trapping occurs as the velocity surpasses the diffusive speed of solute in the liquid. The location of the transition varies little with equilibrium segregation coefficient, and a kinetic limit to solute trapping is found to be quite unlikely. Comparison is made with other models; critical differences are pointed out. Coupled with a growth velocity equation and with macroscopic heat- and solute-diffusion equations, the model forms a complete description of one-dimensional crystal growth. The steady-state solution to this system is indicated for the case of a planar interface. The results are applied to describe regrowth from laser-induced melting. Preliminary comparison with experiment is made. The steady-state solution for thermal and impurity transport is suggested for use whenever detailed computer calculations are unavailable or are unnecessarily involved.
科研通智能强力驱动
Strongly Powered by AbleSci AI