清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel attribute weighting algorithm for clustering high-dimensional categorical data

范畴变量 聚类分析 数据挖掘 加权 计算机科学 CURE数据聚类算法 树冠聚类算法 高维数据聚类 算法 维数(图论) 数据流聚类 相关聚类 单连锁聚类 冗余(工程) 模式识别(心理学) 数学 人工智能 机器学习 纯数学 放射科 操作系统 医学
作者
Liang Bai,Jiye Liang,Chuangyin Dang,Fuyuan Cao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:44 (12): 2843-2861 被引量:87
标识
DOI:10.1016/j.patcog.2011.04.024
摘要

Due to data sparseness and attribute redundancy in high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. To effectively address this issue, this paper presents a new optimization algorithm for clustering high-dimensional categorical data, which is an extension of the k-modes clustering algorithm. In the proposed algorithm, a novel weighting technique for categorical data is developed to calculate two weights for each attribute (or dimension) in each cluster and use the weight values to identify the subsets of important attributes that categorize different clusters. The convergence of the algorithm under an optimization framework is proved. The performance and scalability of the algorithm is evaluated experimentally on both synthetic and real data sets. The experimental studies show that the proposed algorithm is effective in clustering categorical data sets and also scalable to large data sets owning to its linear time complexity with respect to the number of data objects, attributes or clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3927456843完成签到,获得积分10
22秒前
32秒前
孤独幻桃发布了新的文献求助10
46秒前
充电宝应助孤独幻桃采纳,获得30
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
2分钟前
孤独幻桃完成签到,获得积分10
3分钟前
4分钟前
Z可发布了新的文献求助10
4分钟前
5分钟前
洒家完成签到 ,获得积分10
6分钟前
SciGPT应助连安阳采纳,获得10
6分钟前
7分钟前
连安阳发布了新的文献求助10
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
耍酷平凡发布了新的文献求助30
7分钟前
无悔完成签到 ,获得积分10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
聪明的云完成签到 ,获得积分10
8分钟前
稻子完成签到 ,获得积分10
9分钟前
dinglingling完成签到 ,获得积分10
9分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
9分钟前
CHEN完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
Arthur Zhu完成签到,获得积分10
9分钟前
10分钟前
10分钟前
11分钟前
11分钟前
11分钟前
熊猫胖胖WITH超人完成签到,获得积分20
11分钟前
11分钟前
耍酷平凡发布了新的文献求助10
11分钟前
11分钟前
ewxf2001发布了新的文献求助10
11分钟前
12分钟前
花园里的蒜完成签到 ,获得积分0
12分钟前
荔枝发布了新的文献求助20
12分钟前
ewxf2001完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108