Dislocation structures and mechanisms of strain hardening in cyclically deformed Ni3Al + B single crystals

材料科学 位错 应变硬化指数 结晶学 硬化(计算) 拉伤 复合材料 冶金 化学 医学 解剖 图层(电子)
作者
L.M. Hsiung,Norman S. Stoloff
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:152 (1-2): 195-201 被引量:3
标识
DOI:10.1016/0921-5093(92)90067-b
摘要

Abstract The evolution of dislocation substructures and their correlation with stress response in Ni3Al + B single crystals fatigued at room temperature has been studied. Fatigue was conducted at total strain amplitudes of 0.05%–0.2%. Hysteresis loops showing cyclic strain hardening and tension/compression flow stress asymmetry were recorded. The magnitude of stress asymmetry was dependent on the applied cyclic strain. A dislocation structure composed of jogged superdislocations and superdislocation dipoles was observed. The dislocation dipoles were mainly formed by non-conservative motion of jogged superdislocations during the cyclic hardening stage. The dragging of jogs, the interaction between dislocations and the impedance of dislocation motion by dislocation dipoles (point defect clusters) are the major contributors to cyclic strain hardening in Ni3Al + B single crystals. The separation between superpartial dislocations in a paired superdislocation was observed to fluctuate away from the equilibrium spacing during cyclic straining. The extent of the fluctuation became even more pronounced as the applied cyclic strain increased. This phenomenon may explain the cyclic strain dependence of tension-compression flow stress asymmetry found in fatigued Ni3Al + B single crystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
沉默牛排发布了新的文献求助10
刚刚
科研通AI5应助独特微笑采纳,获得10
刚刚
1秒前
1秒前
碧玉墨绿完成签到,获得积分10
1秒前
xiaoma完成签到,获得积分10
1秒前
2秒前
潇洒的擎苍完成签到,获得积分10
2秒前
刘晓纳发布了新的文献求助10
2秒前
晴子发布了新的文献求助10
2秒前
洛鸢发布了新的文献求助10
3秒前
立马毕业完成签到,获得积分10
3秒前
卫尔摩斯发布了新的文献求助10
3秒前
BINBIN完成签到 ,获得积分10
3秒前
hfgeyt完成签到,获得积分10
4秒前
sakurai应助背后的诺言采纳,获得10
4秒前
湘华发布了新的文献求助10
5秒前
Jenny应助lan采纳,获得10
5秒前
单薄的飞松完成签到 ,获得积分10
5秒前
醒醒发布了新的文献求助10
5秒前
6秒前
恨安完成签到,获得积分10
6秒前
jijahui发布了新的文献求助30
6秒前
南瓜咸杏发布了新的文献求助30
6秒前
7秒前
调研昵称发布了新的文献求助50
7秒前
8秒前
白白不读书完成签到 ,获得积分10
8秒前
9秒前
AIA7发布了新的文献求助10
9秒前
9秒前
9秒前
夏橪完成签到,获得积分10
9秒前
9秒前
dddddd发布了新的文献求助10
10秒前
什么也难不倒我完成签到 ,获得积分10
10秒前
10秒前
立马毕业发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762