Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

交叉口(航空) 微粒 小波变换 小波 人工神经网络 一氧化碳 环境科学 比例(比率) 算法 计算机科学 工程类 人工智能 化学 运输工程 地理 地图学 生物化学 催化作用 有机化学
作者
Zhanyong Wang,Feng Lu,Hong-di He,Qing-Chang Lu,Dongsheng Wang,Zhong-Ren Peng
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:104: 264-272 被引量:50
标识
DOI:10.1016/j.atmosenv.2014.12.058
摘要

Abstract At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA–WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM 2.5 ) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM 2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
youger完成签到,获得积分10
2秒前
汎影发布了新的文献求助10
4秒前
4秒前
不配.应助其11采纳,获得10
5秒前
6秒前
舒心怀绿发布了新的文献求助10
7秒前
小戴完成签到,获得积分10
7秒前
pitto完成签到,获得积分10
10秒前
化身孤岛的鲸完成签到 ,获得积分10
11秒前
11秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
上官若男应助灵渊采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得20
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
leslie应助科研通管家采纳,获得10
15秒前
quhayley应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Mzhao应助科研通管家采纳,获得20
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
p13508397190完成签到,获得积分10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
Ava应助wuran521采纳,获得10
16秒前
16秒前
16秒前
这个硬盘完成签到 ,获得积分10
17秒前
花开富贵完成签到,获得积分10
17秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046