Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

交叉口(航空) 微粒 小波变换 小波 人工神经网络 一氧化碳 环境科学 比例(比率) 算法 计算机科学 工程类 人工智能 化学 运输工程 地理 地图学 生物化学 催化作用 有机化学
作者
Zhanyong Wang,Feng Lu,Hong-di He,Qing-Chang Lu,Dongsheng Wang,Zhong-Ren Peng
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:104: 264-272 被引量:50
标识
DOI:10.1016/j.atmosenv.2014.12.058
摘要

Abstract At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA–WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM 2.5 ) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM 2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷粉儿发布了新的文献求助80
3秒前
初衷未央发布了新的文献求助10
6秒前
wangwei完成签到 ,获得积分10
6秒前
burningzmz完成签到,获得积分10
8秒前
郭团团发布了新的文献求助10
8秒前
DW应助kiwi采纳,获得200
9秒前
Qls完成签到,获得积分10
9秒前
10秒前
sun完成签到,获得积分20
11秒前
burningzmz发布了新的文献求助10
12秒前
123完成签到,获得积分10
13秒前
Qls发布了新的文献求助10
13秒前
14秒前
白杨木影子被拉长完成签到,获得积分10
14秒前
科研通AI2S应助宝宝言兼采纳,获得10
15秒前
清脆大树发布了新的文献求助30
15秒前
fuje发布了新的文献求助10
16秒前
theo完成签到 ,获得积分10
16秒前
二世小卒完成签到 ,获得积分0
18秒前
iNk应助你怎么睡得着觉采纳,获得20
19秒前
19秒前
19秒前
20秒前
zzz完成签到,获得积分10
21秒前
21秒前
JAJ发布了新的文献求助10
21秒前
22秒前
努力搞科研完成签到,获得积分10
23秒前
学术小白发布了新的文献求助10
24秒前
小透明发布了新的文献求助10
25秒前
fossette发布了新的文献求助10
25秒前
PhH发布了新的文献求助10
26秒前
zyyyy完成签到,获得积分10
27秒前
27秒前
27秒前
YYYYYY完成签到,获得积分10
29秒前
影子完成签到 ,获得积分10
30秒前
鲲鹏戏龙完成签到,获得积分10
30秒前
粗心的安彤完成签到,获得积分10
30秒前
Hello应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511927
关于积分的说明 11160884
捐赠科研通 3246684
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403