An in situ repetitive divergent polymerization strategy was employed to grow multi-amine poly(amidoamine) dendritic macromolecules on the surfaces of multiwalled carbon nanotubes (MWNTs), affording novel three-dimensional (3D) molecular nanocomposites. The crude MWNTs were oxidized using H(2)SO(4)/HNO(3) = 3:1 (v/v) and then reacted with thionyl chloride, resulting in MWNTs functionalized with chlorocarbonyl groups (MWNT-COCl). MWNT-COCl, when reacted with an excess of ethylenediamine, produced amine-functionalized MWNT supported initiators (MWNT-NH(2)). Using the MWNT-NH(2) as the growth supporter and methylacrylate/ethylenediamine as building blocks, multi-amine dendritic poly(amidoamine) macromolecules were covalently grafted onto the sidewalls and ends of MWNTs via Michael addition reaction and amidation. Thermal gravimetric analysis (TGA) measurements showed that the weight ratio of the as-grown dendritic polymers on the MWNT surfaces lay in the 10%-50% range. The products were also characterized by Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) analysis. The results indicate that the dendrimers are grafted onto the surface of MWNTs. The as-prepared nanocomposites exhibit excellent dispersibility in water.