数学
持久性(不连续性)
平滑度
常微分方程
半群
吸引子
数学分析
流量(数学)
人口
边界(拓扑)
指数稳定性
动力学(音乐)
偏微分方程
人口模型
应用数学
微分方程
几何学
非线性系统
岩土工程
物理
人口学
社会学
工程类
量子力学
声学
作者
Jack K. Hale,Paul Waltman
出处
期刊:Siam Journal on Mathematical Analysis
[Society for Industrial and Applied Mathematics]
日期:1989-03-01
卷期号:20 (2): 388-395
被引量:495
摘要
The concept of persistence reflects the survival of all components of a model ecosystem. Most of the results to date are restricted to ordinary differential equations or to dynamics on locally compact spaces. The concept is investigated here in the setting of a $C^0 $-semigroup which is asymptotically smooth. Since the equations of population dynamics often involve delays or diffusion this seems the appropriate setting. Conditions are placed on the flow on the boundary which, given the presence of a global attractor provided by the assumption of dissipativeness and asymptotic smoothness, are necessary and sufficient for persistence.
科研通智能强力驱动
Strongly Powered by AbleSci AI