Characterizing user behavior in online social networks

点选流向 爬行 计算机科学 万维网 社交网络(社会语言学) 社会网络分析 社会化媒体 互联网隐私 数据科学 互联网 Web导航 医学 Web API 解剖
作者
Fabrí­cio Benevenuto,Tiago Rodrigues,Meeyoung Cha,Virgı́lio Almeida
标识
DOI:10.1145/1644893.1644900
摘要

Understanding how users behave when they connect to social networking sites creates opportunities for better interface design, richer studies of social interactions, and improved design of content distribution systems. In this paper, we present a first of a kind analysis of user workloads in online social networks. Our study is based on detailed clickstream data, collected over a 12-day period, summarizing HTTP sessions of 37,024 users who accessed four popular social networks: Orkut, MySpace, Hi5, and LinkedIn. The data were collected from a social network aggregator website in Brazil, which enables users to connect to multiple social networks with a single authentication. Our analysis of the clickstream data reveals key features of the social network workloads, such as how frequently people connect to social networks and for how long, as well as the types and sequences of activities that users conduct on these sites. Additionally, we crawled the social network topology of Orkut, so that we could analyze user interaction data in light of the social graph. Our data analysis suggests insights into how users interact with friends in Orkut, such as how frequently users visit their friends' or non-immediate friends' pages. In summary, our analysis demonstrates the power of using clickstream data in identifying patterns in social network workloads and social interactions. Our analysis shows that browsing, which cannot be inferred from crawling publicly available data, accounts for 92% of all user activities. Consequently, compared to using only crawled data, considering silent interactions like browsing friends' pages increases the measured level of interaction among users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wing完成签到,获得积分10
刚刚
1秒前
byron完成签到,获得积分10
1秒前
DrZOU发布了新的文献求助10
2秒前
Kottl发布了新的文献求助10
3秒前
我爱蓝胖子完成签到,获得积分10
4秒前
科研通AI2S应助鲤鱼香烟采纳,获得10
4秒前
小李在哪儿完成签到 ,获得积分10
5秒前
byron发布了新的文献求助10
5秒前
斯文败类应助专注灵凡采纳,获得10
5秒前
6秒前
7秒前
7秒前
Michael完成签到,获得积分10
7秒前
myself完成签到,获得积分10
7秒前
7秒前
hsy309完成签到,获得积分10
8秒前
9秒前
sci完成签到,获得积分10
9秒前
10秒前
14秒前
monster0101发布了新的文献求助10
15秒前
科研挂完成签到,获得积分20
16秒前
factor完成签到,获得积分20
16秒前
lemono_o完成签到,获得积分10
17秒前
17秒前
JamesPei应助伊伊采纳,获得10
19秒前
小蘑菇应助ohhhh采纳,获得10
20秒前
烟花应助wddfz采纳,获得10
20秒前
20秒前
jumppll完成签到,获得积分10
20秒前
汉堡包应助打败拖延症采纳,获得10
20秒前
21秒前
22秒前
sekidesu发布了新的文献求助10
22秒前
sekidesu发布了新的文献求助10
22秒前
sekidesu发布了新的文献求助30
22秒前
sekidesu发布了新的文献求助30
22秒前
23秒前
NexusExplorer应助陈柚子采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919