线粒体生物发生
海马结构
SOD2
神经保护
生物
TFAM公司
线粒体
细胞生物学
内科学
内分泌学
神经科学
超氧化物歧化酶
氧化应激
医学
作者
Shang‐Der Chen,Tay–Jyi Lin,Jainn‐Jim Lin,Ding Yang,Su Ying Lee,Fu-Zen Shaw,Chia Wei Liou,Yao-Chung Chuang
摘要
Delayed neuronal cell death occurs in the vulnerable CA1 subfield of the hippocampus after transient global ischemia (TGI). We demonstrated previously, based on an experimental model of TGI, that the significantly increased content of oxidized proteins in hippocampal CA1 neuron was observed as early as 30 min after TGI, followed by augmentation of PGC-1α expression at 1 hr, as well as up-regulation of mitochondrial uncoupling protein 2 (UCP2) and superoxide dismutases 2 (SOD2). Using the same animal model, the present study investigated the role of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and PGC-1α in delayed neuronal cell death and mitochondrial biogenesis in the hippocampus. In Sprague-Dawley rats, significantly increased expression of nuclear CaMKIV was noted in the hippocampal CA1 subfield as early as 15 min after TGI. In addition, the index of mitochondrial biogenesis, including a mitochondrial DNA-encoded polypeptide, cytochrome c oxidase subunit 1 (COX1), and mitochondrial number significantly increased in the hippocampal CA1 subfield 4 hr after TGI. Application bilaterally into the hippocampal CA1 subfield of an inhibitor of CaMKIV, KN-93, 30 min before TGI attenuated both CaMKIV and PGC-1α expression, followed by down-regulation of UCP2 and SOD2, decrease of COX1 expression and mitochondrial number, heightened protein oxidation, and enhanced hippocampal CA1 neuronal damage. This study provides correlative evidence for the neuroprotective cascade of CaMKIV/PGC-1α which implicates at least in part the mitochondrial antioxidants UCP2 and SOD2 as well as mitochondrial biogenesis in ischemic brain injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI