作者
Jinming Huang,Liyang Cui,Fan Wang,Zhaofei Liu
摘要
Positron emission tomography (PET) has become a powerful tool for probing biochemical processes in living subjects. PET imaging depends largely on the development of novel PET tracers labeled with positron-emitting radionuclides. Since the four traditional PET isotopes (18F, 11C, 13N, and 15O) are produced in a cyclotron and are short-lived, their use for long-term observation of biological processes in vivo is limited. In the last decades, extensive research in the development of other unconventional radionuclides (such as 64Cu, 68Ga, 89Zr, 86Y, and 124I) labeled tracers with half-lives complementary to the biological properties of their targeting agents has been conducted. Among these tracers, 86Y-based PET tracers have gained increasing attention since they are ideal surrogates for in vivo determination of biodistribution and dosimetry of therapeutic 90Y (pure β – emitter) pharmaceuticals. In this review article, we will brief introduce the physical characteristics, production, and radiochemistry of 86Y, and will summarize the current 86Y-based PET tracers used for molecular imaging and cancer detection in animal studies and in clinical trials. Keywords: Cancer, molecular imaging, molecular probe, positron emission tomography (PET), radiotracer, unconventional radionuclide, 86Y, Antibody-Based 86Y Tracers, RADIOCHEMISTRY, PET IMAGING