本构方程
刚度
可塑性
利维-米塞斯方程
刚度矩阵
分叉
材料科学
理论(学习稳定性)
基质(化学分析)
剪切(地质)
弹性模量
经典力学
机械
数学分析
结构工程
数学
物理
复合材料
有限元法
非线性系统
工程类
计算机科学
量子力学
机器学习
强度因子
出处
期刊:International Journal of Geomechanics
[American Society of Civil Engineers]
日期:2002-04-01
卷期号:2 (2): 259-267
被引量:46
标识
DOI:10.1061/(asce)1532-3641(2002)2:2(259)
摘要
Previous analyses are amplified to demonstrate that when the constitutive equations for geo‐materials, in which the elastic moduli depend on the plastic strain, are derived from basic thermo‐mechanical principles, the resulting rate forms of the equations have a symmetric stiffness matrix (tensor). This result is at odds with existing analyses, which have concluded that these matrices should be non‐symmetric. The consequences of these results for stability, bifurcation, and shear band formation are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI