Tightly Coupled Machine Learning Coprocessor Architecture With Analog In-Memory Computing for Instruction-Level Acceleration

计算机科学 协处理器 编译程序 隐藏物 嵌入式系统 计算机体系结构 并行计算 计算机硬件 操作系统
作者
SungWon Chung,Jiemi Wang
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 544-561 被引量:5
标识
DOI:10.1109/jetcas.2019.2934929
摘要

Low-profile mobile computing platforms often need to execute a variety of machine learning algorithms with limited memory and processing power. To address this challenge, this work presents Coara, an instruction-level processor acceleration architecture, which efficiently integrates an approximate analog in-memory computing coprocessor for accelerating general machine learning applications by exploiting analog register file cache. The instruction-level acceleration offers true programmability beyond the degree of freedom provided by reconfigurable machine learning accelerators, and also allows the code generation stage of a compiler back-end to control the coprocessor execution and data flow, so that applications do not need highlevel machine learning software frameworks with a large memory footprint. Conventional analog and mixed-signal accelerators suffer from the overhead of frequent data conversion between analog and digital signals. To solve this classical problem, Coara uses an analog register file cache, which interfaces the analog in-memory computing coprocessor with the digital register file of the processor core. As a result, more than 90% of data conversion overhead with ADC and DAC can be eliminated by temporarily storing the result of analog computation in a switched-capacitor analog memory cell until data dependency occurs. Cycle-accurate Verilog RTL model of the proposed architecture is evaluated with 45 nm CMOS technology parameters while executing machine learning benchmark computation codes that are generated by a customized cross-compiler without using machine learning software frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
u深度完成签到 ,获得积分10
刚刚
万能图书馆应助超级灵竹采纳,获得10
刚刚
阳光的紊完成签到,获得积分10
刚刚
xyx发布了新的文献求助10
刚刚
曦之南。完成签到,获得积分10
刚刚
silence63完成签到 ,获得积分10
刚刚
翎儿响叮当完成签到 ,获得积分10
1秒前
丝垚完成签到 ,获得积分10
2秒前
丘比特应助贺知什么书采纳,获得10
2秒前
CipherSage应助112我的采纳,获得10
4秒前
隐形曼青应助土豪的觅翠采纳,获得10
4秒前
6秒前
ding应助3333采纳,获得10
6秒前
dududuudu完成签到 ,获得积分10
7秒前
李健应助HY采纳,获得10
8秒前
yang完成签到,获得积分10
10秒前
11秒前
xyx完成签到,获得积分10
12秒前
weiyf15完成签到 ,获得积分10
12秒前
353851547crf完成签到,获得积分10
13秒前
14秒前
c2发布了新的文献求助20
15秒前
Aman发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
快乐的小叮当应助橙子采纳,获得10
18秒前
18秒前
bbh发布了新的文献求助10
18秒前
小阳发布了新的文献求助10
20秒前
今后应助科研爱好者采纳,获得10
20秒前
21秒前
21秒前
21秒前
HY发布了新的文献求助10
22秒前
陈曦发布了新的文献求助10
23秒前
打打应助如此这般采纳,获得10
23秒前
JamesPei应助morena采纳,获得10
23秒前
112我的发布了新的文献求助10
25秒前
3333发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176