Tightly Coupled Machine Learning Coprocessor Architecture With Analog In-Memory Computing for Instruction-Level Acceleration

计算机科学 协处理器 编译程序 隐藏物 嵌入式系统 计算机体系结构 并行计算 计算机硬件 操作系统
作者
SungWon Chung,Jiemi Wang
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 544-561 被引量:5
标识
DOI:10.1109/jetcas.2019.2934929
摘要

Low-profile mobile computing platforms often need to execute a variety of machine learning algorithms with limited memory and processing power. To address this challenge, this work presents Coara, an instruction-level processor acceleration architecture, which efficiently integrates an approximate analog in-memory computing coprocessor for accelerating general machine learning applications by exploiting analog register file cache. The instruction-level acceleration offers true programmability beyond the degree of freedom provided by reconfigurable machine learning accelerators, and also allows the code generation stage of a compiler back-end to control the coprocessor execution and data flow, so that applications do not need highlevel machine learning software frameworks with a large memory footprint. Conventional analog and mixed-signal accelerators suffer from the overhead of frequent data conversion between analog and digital signals. To solve this classical problem, Coara uses an analog register file cache, which interfaces the analog in-memory computing coprocessor with the digital register file of the processor core. As a result, more than 90% of data conversion overhead with ADC and DAC can be eliminated by temporarily storing the result of analog computation in a switched-capacitor analog memory cell until data dependency occurs. Cycle-accurate Verilog RTL model of the proposed architecture is evaluated with 45 nm CMOS technology parameters while executing machine learning benchmark computation codes that are generated by a customized cross-compiler without using machine learning software frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真三问给天真三问的求助进行了留言
刚刚
wys3712发布了新的文献求助20
刚刚
1秒前
HYLynn完成签到,获得积分10
1秒前
Orange应助天真枫采纳,获得10
2秒前
2秒前
MchemG应助贝贝采纳,获得20
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
xwydx发布了新的文献求助10
4秒前
万能图书馆应助wys3712采纳,获得10
5秒前
5秒前
5秒前
解愚志给lxf_123的求助进行了留言
5秒前
5秒前
Nedel发布了新的文献求助50
5秒前
5秒前
midoli发布了新的文献求助10
6秒前
6秒前
无花果应助没心情A采纳,获得10
7秒前
7秒前
沈括完成签到,获得积分10
7秒前
CHER发布了新的文献求助10
8秒前
8秒前
9秒前
Rex完成签到,获得积分10
9秒前
QYPANG发布了新的文献求助10
10秒前
10秒前
橘子发布了新的文献求助10
10秒前
包容可仁发布了新的文献求助10
10秒前
胡思发布了新的文献求助10
11秒前
可爱的函函应助科研小白采纳,获得10
12秒前
13秒前
小兔子完成签到 ,获得积分10
13秒前
13秒前
柜子发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213