Simultaneous Bearing Fault Recognition and Remaining Useful Life Prediction Using Joint-Loss Convolutional Neural Network

过度拟合 计算机科学 卷积神经网络 人工智能 特征提取 一般化 模式识别(心理学) 断层(地质) 机器学习 人工神经网络 深度学习 数据挖掘 特征(语言学) 数学 地震学 地质学 数学分析 语言学 哲学
作者
Ruonan Liu,Boyuan Yang,Alexander G. Hauptmann
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 87-96 被引量:155
标识
DOI:10.1109/tii.2019.2915536
摘要

Fault diagnosis and remaining useful life (RUL) prediction are always two major issues in modern industrial systems, which are usually regarded as two separated tasks to make the problem easier but ignore the fact that there are certain information of these two tasks that can be shared to improve the performance. Therefore, to capture common features between different relative problems, a joint-loss convolutional neural network (JL-CNN) architecture is proposed in this paper, which can implement bearing fault recognition and RUL prediction in parallel by sharing the parameters and partial networks, meanwhile keeping the output layers of different tasks. The JL-CNN is constructed based on a CNN, which is a widely used deep learning method because of its powerful feature extraction ability. During optimization phase, a JL function is designed to enable the proposed approach to learn the diagnosis-prognosis features and improve generalization while reducing the overfitting risk and computation cost. Moreover, because the information behind the signals of different problems has been shared and exploited deeper, the generalization and the accuracy of results can also be improved. Finally, the effectiveness of the JL-CNN method is validated by run-to-failure dataset. Compared with support vector regression and traditional CNN, the mean-square-error of the proposed method decreases 82.7% and 24.9%, respectively. Therefore, results and comparisons show that the proposed method can be applied for the intercrossed applications between fault diagnosis and RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷若风关注了科研通微信公众号
1秒前
xiao发布了新的文献求助10
1秒前
LIUYI完成签到,获得积分20
2秒前
2秒前
称心的海蓝完成签到 ,获得积分10
3秒前
3秒前
6秒前
6秒前
9秒前
Liam发布了新的文献求助10
9秒前
等你下课发布了新的文献求助10
10秒前
苯二氮卓发布了新的文献求助30
12秒前
Explorer3号完成签到,获得积分10
13秒前
文艺明杰发布了新的文献求助10
13秒前
咕噜咕噜豆完成签到,获得积分10
14秒前
田様应助shi帆采纳,获得10
14秒前
15秒前
领导范儿应助怡and诺采纳,获得10
16秒前
科研通AI2S应助姜彦乔采纳,获得10
16秒前
17秒前
17秒前
18秒前
凸迩丝儿完成签到 ,获得积分10
19秒前
花痴的向雁完成签到 ,获得积分10
19秒前
19秒前
19秒前
bkagyin应助等你下课采纳,获得10
21秒前
22秒前
天天快乐应助萤火虫采纳,获得10
22秒前
程院发布了新的文献求助10
23秒前
王天天发布了新的文献求助10
24秒前
情怀应助肌肉干细胞采纳,获得30
24秒前
25秒前
星辰大海应助研友_LjvDXL采纳,获得30
25秒前
Aki发布了新的文献求助10
26秒前
岑岑岑完成签到,获得积分10
26秒前
Garry应助xiao采纳,获得10
27秒前
27秒前
Liam发布了新的文献求助10
27秒前
酷酷若风发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124472
求助须知:如何正确求助?哪些是违规求助? 2774822
关于积分的说明 7723991
捐赠科研通 2430264
什么是DOI,文献DOI怎么找? 1290985
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297