四分位间距
尿
泌尿系统
双酚S
医学
氧化磷酸化
DNA损伤
内科学
二羟基化合物
毒理
化学
双酚A
生物化学
DNA
生物
环氧树脂
有机化学
作者
Ying Zhou,Yuan Yao,Yijun Shao,Weidong Qu,Yue Chen,Qingwu Jiang
标识
DOI:10.1016/j.envpol.2019.07.089
摘要
The associations between bisphenol analogues (BPs) exposure and oxidative damage was explored in this 3-year longitudinal study of 275 school children in East China. Nine BPs in first morning urine samples were measured to assess BPs exposure, and 8-hydroxydeoxyguanosine (8-OHdG) and 8-oxo-7,8-dihydroguanosine (8-OHG) were measured as biomarkers of oxidative DNA and RNA damage. Linear mixed model (LMM) was used for repeated measures analysis. School children were mainly exposed to BPA, BPS, BPF, and BPAF (detection frequencies: 97.9%, 42.2%, 13.3%, and 12.8%) with median concentrations of 1.55, 0.355, 0.236 and 0.238 μg g-1Cre, respectively. An interquartile range (IQR) increase in urinary BPA was significantly associated with 12.9% (95% CI: 6.1%, 19.6%) increase in 8-OHdG and 19.4% (95% CI: 11.7%, 27.1%) increase in 8-OHG, and for total of BPs (the sum of BPA, BPS, BPF, and BPAF), they were 17.4% (95% CI: 8.9%, 26.0%) for 8-OHdG and 25.9% (95% CI: 16.1%, 35.7%) for 8-OHG, respectively. BPS was positively associated with 8-OHG, but not with 8-OHdG. The study found positive associations of urinary levels of BPA and total BPs with 8-OHdG and 8-OHG and indicated that BPs exposure might cause oxidative RNA damage.
科研通智能强力驱动
Strongly Powered by AbleSci AI