清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks—Counting, Detection, and Tracking

增采样 人工智能 计算机科学 卷积神经网络 计算机视觉 密度估算 模式识别(心理学) 图像分辨率 像素 联营 目标检测 数学 图像(数学) 统计 估计员
作者
Di Kang,Zheng Ma,Antoni B. Chan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:29 (5): 1408-1422 被引量:192
标识
DOI:10.1109/tcsvt.2018.2837153
摘要

For crowded scenes, the accuracy of object-based computer vision methods declines when the images are low-resolution and objects have severe occlusions. Taking counting methods for example, almost all the recent state-of-the-art counting methods bypass explicit detection and adopt regression-based methods to directly count the objects of interest. Among regression-based methods, density map estimation, where the number of objects inside a subregion is the integral of the density map over that subregion, is especially promising because it preserves spatial information, which makes it useful for both counting and localization (detection and tracking). With the power of deep convolutional neural networks (CNNs) the counting performance has improved steadily. The goal of this paper is to evaluate density maps generated by density estimation methods on a variety of crowd analysis tasks, including counting, detection, and tracking. Most existing CNN methods produce density maps with resolution that is smaller than the original images, due to the downsample strides in the convolution/pooling operations. To produce an original-resolution density map, we also evaluate a classical CNN that uses a sliding window regressor to predict the density for every pixel in the image. We also consider a fully convolutional adaptation, with skip connections from lower convolutional layers to compensate for loss in spatial information during upsampling. In our experiments, we found that the lower-resolution density maps sometimes have better counting performance. In contrast, the original-resolution density maps improved localization tasks, such as detection and tracking, compared with bilinear upsampling the lower-resolution density maps. Finally, we also propose several metrics for measuring the quality of a density map, and relate them to experiment results on counting and localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫巫巫巫巫完成签到 ,获得积分10
23秒前
长情半邪完成签到 ,获得积分10
25秒前
33秒前
summer完成签到,获得积分10
53秒前
韩寒完成签到 ,获得积分10
1分钟前
1分钟前
小西完成签到 ,获得积分10
1分钟前
poki完成签到 ,获得积分10
1分钟前
Serein完成签到,获得积分10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
1分钟前
wx1完成签到 ,获得积分0
2分钟前
cjh完成签到,获得积分20
2分钟前
2分钟前
guan发布了新的文献求助10
2分钟前
2分钟前
guan完成签到,获得积分10
3分钟前
恒恒666完成签到 ,获得积分10
3分钟前
丘比特应助dablack采纳,获得10
3分钟前
3分钟前
青梅发布了新的文献求助10
3分钟前
整齐的蜻蜓完成签到 ,获得积分10
4分钟前
chcmy完成签到 ,获得积分0
4分钟前
不能吃太饱完成签到 ,获得积分10
4分钟前
tszjw168完成签到 ,获得积分10
4分钟前
打打应助Omni采纳,获得10
4分钟前
洛神完成签到 ,获得积分10
4分钟前
5分钟前
dablack发布了新的文献求助10
5分钟前
JIN完成签到,获得积分10
6分钟前
上官若男应助一个小胖子采纳,获得10
6分钟前
笨笨青筠完成签到 ,获得积分10
6分钟前
NorthWang完成签到,获得积分10
6分钟前
6分钟前
6分钟前
天天快乐应助dablack采纳,获得10
6分钟前
脑洞疼应助一个小胖子采纳,获得10
6分钟前
7分钟前
7分钟前
LiangRen完成签到 ,获得积分10
7分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303305
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482651
捐赠科研通 2611539
什么是DOI,文献DOI怎么找? 1425981
科研通“疑难数据库(出版商)”最低求助积分说明 662524
邀请新用户注册赠送积分活动 647005