Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks—Counting, Detection, and Tracking

增采样 人工智能 计算机科学 卷积神经网络 计算机视觉 密度估算 模式识别(心理学) 图像分辨率 像素 联营 目标检测 数学 图像(数学) 统计 估计员
作者
Di Kang,Zheng Ma,Antoni B. Chan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:29 (5): 1408-1422 被引量:192
标识
DOI:10.1109/tcsvt.2018.2837153
摘要

For crowded scenes, the accuracy of object-based computer vision methods declines when the images are low-resolution and objects have severe occlusions. Taking counting methods for example, almost all the recent state-of-the-art counting methods bypass explicit detection and adopt regression-based methods to directly count the objects of interest. Among regression-based methods, density map estimation, where the number of objects inside a subregion is the integral of the density map over that subregion, is especially promising because it preserves spatial information, which makes it useful for both counting and localization (detection and tracking). With the power of deep convolutional neural networks (CNNs) the counting performance has improved steadily. The goal of this paper is to evaluate density maps generated by density estimation methods on a variety of crowd analysis tasks, including counting, detection, and tracking. Most existing CNN methods produce density maps with resolution that is smaller than the original images, due to the downsample strides in the convolution/pooling operations. To produce an original-resolution density map, we also evaluate a classical CNN that uses a sliding window regressor to predict the density for every pixel in the image. We also consider a fully convolutional adaptation, with skip connections from lower convolutional layers to compensate for loss in spatial information during upsampling. In our experiments, we found that the lower-resolution density maps sometimes have better counting performance. In contrast, the original-resolution density maps improved localization tasks, such as detection and tracking, compared with bilinear upsampling the lower-resolution density maps. Finally, we also propose several metrics for measuring the quality of a density map, and relate them to experiment results on counting and localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq发布了新的文献求助10
刚刚
张润泽发布了新的文献求助10
刚刚
小怪兽发布了新的文献求助10
1秒前
无限的绮晴完成签到,获得积分10
1秒前
孙福禄应助深情的迎海采纳,获得10
1秒前
朱w完成签到,获得积分10
1秒前
Rachel发布了新的文献求助10
1秒前
深情安青应助东方采纳,获得10
1秒前
云生雾霭完成签到,获得积分10
2秒前
2秒前
隐形曼青应助erhan7采纳,获得10
2秒前
可爱的函函应助孙刚采纳,获得10
2秒前
linyuiz关注了科研通微信公众号
2秒前
客官们帮帮忙完成签到,获得积分10
3秒前
zhaoyang完成签到 ,获得积分10
3秒前
暖冬22完成签到,获得积分10
4秒前
大力老木关注了科研通微信公众号
4秒前
星辰大海应助ZJJ采纳,获得10
5秒前
Rubby应助慕慕倾采纳,获得10
5秒前
5秒前
DWF完成签到,获得积分20
6秒前
叶舟完成签到,获得积分10
6秒前
Kingcrimson发布了新的文献求助10
6秒前
Natforever完成签到 ,获得积分10
6秒前
刘晓宇完成签到,获得积分10
6秒前
7秒前
alverine完成签到,获得积分10
7秒前
Wind发布了新的文献求助10
7秒前
8秒前
月下荷花发布了新的文献求助10
8秒前
郭达仲完成签到 ,获得积分10
9秒前
花开的声音1217完成签到,获得积分10
10秒前
孙福禄应助mrz采纳,获得10
10秒前
开心蘑菇应助Natforever采纳,获得10
10秒前
11秒前
do0完成签到,获得积分10
11秒前
12秒前
甜菜发布了新的文献求助10
13秒前
冰冰发布了新的文献求助10
13秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635