Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks—Counting, Detection, and Tracking

增采样 人工智能 计算机科学 卷积神经网络 计算机视觉 密度估算 模式识别(心理学) 图像分辨率 像素 联营 目标检测 数学 图像(数学) 统计 估计员
作者
Di Kang,Zheng Ma,Antoni B. Chan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:29 (5): 1408-1422 被引量:192
标识
DOI:10.1109/tcsvt.2018.2837153
摘要

For crowded scenes, the accuracy of object-based computer vision methods declines when the images are low-resolution and objects have severe occlusions. Taking counting methods for example, almost all the recent state-of-the-art counting methods bypass explicit detection and adopt regression-based methods to directly count the objects of interest. Among regression-based methods, density map estimation, where the number of objects inside a subregion is the integral of the density map over that subregion, is especially promising because it preserves spatial information, which makes it useful for both counting and localization (detection and tracking). With the power of deep convolutional neural networks (CNNs) the counting performance has improved steadily. The goal of this paper is to evaluate density maps generated by density estimation methods on a variety of crowd analysis tasks, including counting, detection, and tracking. Most existing CNN methods produce density maps with resolution that is smaller than the original images, due to the downsample strides in the convolution/pooling operations. To produce an original-resolution density map, we also evaluate a classical CNN that uses a sliding window regressor to predict the density for every pixel in the image. We also consider a fully convolutional adaptation, with skip connections from lower convolutional layers to compensate for loss in spatial information during upsampling. In our experiments, we found that the lower-resolution density maps sometimes have better counting performance. In contrast, the original-resolution density maps improved localization tasks, such as detection and tracking, compared with bilinear upsampling the lower-resolution density maps. Finally, we also propose several metrics for measuring the quality of a density map, and relate them to experiment results on counting and localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serenity完成签到 ,获得积分10
刚刚
Benliu完成签到,获得积分10
刚刚
csq发布了新的文献求助10
1秒前
2秒前
Hello应助外向的醉易采纳,获得10
2秒前
DWWWDAADAD完成签到,获得积分10
5秒前
科研通AI5应助一天八杯水采纳,获得10
6秒前
杨大仙儿完成签到 ,获得积分10
6秒前
8秒前
坚强的广山应助木头人采纳,获得200
8秒前
嘻哈学习完成签到,获得积分10
8秒前
8秒前
8秒前
ying完成签到,获得积分10
9秒前
9秒前
虚幻白玉完成签到,获得积分10
10秒前
安静的孤萍完成签到,获得积分10
11秒前
11秒前
lyz666发布了新的文献求助10
11秒前
liuxl发布了新的文献求助10
12秒前
smile完成签到,获得积分20
13秒前
Shuo Yang完成签到,获得积分10
13秒前
13秒前
伊酒发布了新的文献求助10
13秒前
蓉儿完成签到 ,获得积分10
14秒前
动人的梦之完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
小小爱吃百香果完成签到,获得积分20
17秒前
薪炭林应助空心采纳,获得30
17秒前
宫宛儿完成签到,获得积分10
17秒前
smile发布了新的文献求助10
18秒前
永远少年发布了新的文献求助10
19秒前
跳跃完成签到,获得积分20
19秒前
19秒前
20秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808