Accurate and rapid CT image segmentation of the eyes and surrounding organs for precise radiotherapy

分割 人工智能 卷积神经网络 计算机科学 图像分割 计算机视觉 镜头(地质) 医学影像学 模式识别(心理学) 医学 物理 光学
作者
Yao Sun,Huabei Shi,Shuo Zhang,Pei Wang,Weiling Zhao,Guangming Zhang,Kehong Yuan
出处
期刊:Medical Physics [Wiley]
卷期号:46 (5): 2214-2222 被引量:18
标识
DOI:10.1002/mp.13463
摘要

The precise segmentation of organs at risk (OARs) is of importance for improving therapeutic outcomes and reducing injuries of patients undergoing radiotherapy. In this study, we developed a new approach for accurate computed tomography (CT) image segmentation of the eyes and surrounding organs, which is first locating then segmentation (FLTS).The FLTS approach was composed of two steps: (a) classification of CT images using convolutional neural networks (CNN), and (b) segmentation of the eyes and surrounding organs using modified U-shape networks. In order to obtain optimal performance, we enhanced our training datasets by random jitter and rotation.This model was trained and verified using the clinical datasets that were delineated by experienced physicians. The dice similarity coefficient (DSC) was employed to evaluate the performance of our segmentation method. The average DSCs for the segmentation of the pituitary, left eye, right eye, left eye lens, right eye lens, left optic nerve, and right optic nerve were 90%, 94%, 93.5%, 84.5%, 84.3%, 80.3%, and 82.2%, respectively.We developed a new network-based approach for rapid and accurate CT image segmentation of the eyes and surrounding organs. This method is accurate and efficient, and is suitable for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
炙热小馒头完成签到,获得积分10
4秒前
科研yu完成签到,获得积分10
4秒前
无敌反派大美人应助baihy采纳,获得10
5秒前
6秒前
长乐完成签到,获得积分10
6秒前
7秒前
醉糊涂发布了新的文献求助10
7秒前
9秒前
9秒前
明哲派发布了新的文献求助10
11秒前
Yang发布了新的文献求助10
12秒前
12秒前
12秒前
哎亚亚完成签到 ,获得积分10
13秒前
Ava应助木wm采纳,获得10
14秒前
门门关注了科研通微信公众号
14秒前
雨er完成签到 ,获得积分10
14秒前
Steven发布了新的文献求助10
15秒前
biubiubiu完成签到,获得积分20
15秒前
六六君丷发布了新的文献求助10
15秒前
小陈要努力完成签到,获得积分20
16秒前
充电宝应助yj采纳,获得10
17秒前
yuyu发布了新的文献求助10
18秒前
小二郎应助GMJ123采纳,获得10
19秒前
万能图书馆应助六六君丷采纳,获得10
22秒前
25秒前
27秒前
聂难敌发布了新的文献求助10
29秒前
Sunny发布了新的文献求助10
31秒前
31秒前
31秒前
32秒前
小蘑菇应助占那个采纳,获得10
34秒前
门门发布了新的文献求助10
34秒前
雨淋沐风发布了新的文献求助10
34秒前
iNk应助聂难敌采纳,获得10
35秒前
bong完成签到,获得积分10
35秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346458
求助须知:如何正确求助?哪些是违规求助? 2973193
关于积分的说明 8658263
捐赠科研通 2653611
什么是DOI,文献DOI怎么找? 1453276
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662691