One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS

Softmax函数 人工智能 计算机科学 支持向量机 特征提取 模式识别(心理学) 分类器(UML) 管道(软件) 计算 卷积神经网络 机器学习 算法 程序设计语言
作者
Huijuan Wu,Jiping Chen,Xiangrong Liu,Yao Xiao,Mengjiao Wang,Yi Zheng,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:37 (17): 4359-4366 被引量:179
标识
DOI:10.1109/jlt.2019.2923839
摘要

The vibration recognition along the fiber is still a challenging problem in pipeline monitoring with distributed optical-fiber acoustic sensor (DAS), because the burying environments in a wide range are complicated, and there are many different vibration sources interfering at different fiber locations, which are unpredictable and changing from time to time. Conventional machine learning methods with fixed hand-crated feature extraction are always time-consuming and laborious, and the recognition is relying heavily on expert knowledge, which has poor generalization ability. Thus, deep learning algorithms have been tried in this area. However, in this paper, it is found that one-dimensional (1-D) CNN can extract the distinguishable properties of the vibration signals of DAS with better performance and efficiency than the 2-D CNN through real field data experiments. And there are two main increment of the work: First, we try to use an efficient 1-D CNN to replace the 2-D CNN for feature extraction, which can improve the computation efficiency by directly feeding raw or the denoised data without any transformation or other manual work, and using simpler network structure; second, we optimize the classification further by replacing the softmax layer by the support vector machine (SVM) classifier, which is selected optimally from several typical classifiers, such as SVM, random forest, and extreme gradient boosting. Finally, the proposed method (1-D CNN+SVM) can achieve an average recognition accuracy of over 98% for five main classes of typical DAS signals in the oil pipeline monitoring application, which is superior to the conventional machine learning methods with fixed hand-crated feature. At the same time, both accuracy and efficiency of the method are better than those of the 2-D CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助tesla采纳,获得10
刚刚
三三完成签到,获得积分10
刚刚
早早发论文完成签到,获得积分10
刚刚
刚刚
焦焦发布了新的文献求助10
刚刚
Atlantis完成签到,获得积分10
1秒前
乖拉完成签到,获得积分10
1秒前
1秒前
贝儿完成签到,获得积分10
2秒前
gugugu完成签到 ,获得积分10
2秒前
科目三应助顺利小陈采纳,获得30
2秒前
默默白开水完成签到 ,获得积分10
2秒前
张家木完成签到,获得积分10
2秒前
wxski应助浮生采纳,获得50
2秒前
顺顺发布了新的文献求助10
3秒前
不懈奋进应助七七爱学习采纳,获得30
3秒前
Lawrence完成签到,获得积分10
3秒前
3秒前
sun完成签到,获得积分10
4秒前
QIYU发布了新的文献求助10
4秒前
sigmund完成签到,获得积分10
4秒前
铁手无情完成签到,获得积分10
4秒前
Crystal完成签到 ,获得积分10
5秒前
tetrakis完成签到,获得积分10
5秒前
梨香蓝应助wsg采纳,获得10
6秒前
木桶人plus完成签到,获得积分10
7秒前
Cedricharr1s完成签到,获得积分0
7秒前
wang完成签到,获得积分10
7秒前
Warten995完成签到,获得积分10
7秒前
之仔饼完成签到,获得积分10
8秒前
文艺的惜寒完成签到,获得积分20
8秒前
星辰大海应助tesla采纳,获得10
8秒前
9秒前
Psy完成签到,获得积分10
9秒前
sigmund发布了新的文献求助30
9秒前
10秒前
土豆魔王完成签到 ,获得积分20
10秒前
木桶人plus发布了新的文献求助20
10秒前
焦焦完成签到,获得积分10
12秒前
bo完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910