One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS

Softmax函数 人工智能 计算机科学 支持向量机 特征提取 模式识别(心理学) 分类器(UML) 管道(软件) 计算 卷积神经网络 机器学习 算法 程序设计语言
作者
Huijuan Wu,Jiping Chen,Xiangrong Liu,Yao Xiao,Mengjiao Wang,Yi Zheng,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:37 (17): 4359-4366 被引量:179
标识
DOI:10.1109/jlt.2019.2923839
摘要

The vibration recognition along the fiber is still a challenging problem in pipeline monitoring with distributed optical-fiber acoustic sensor (DAS), because the burying environments in a wide range are complicated, and there are many different vibration sources interfering at different fiber locations, which are unpredictable and changing from time to time. Conventional machine learning methods with fixed hand-crated feature extraction are always time-consuming and laborious, and the recognition is relying heavily on expert knowledge, which has poor generalization ability. Thus, deep learning algorithms have been tried in this area. However, in this paper, it is found that one-dimensional (1-D) CNN can extract the distinguishable properties of the vibration signals of DAS with better performance and efficiency than the 2-D CNN through real field data experiments. And there are two main increment of the work: First, we try to use an efficient 1-D CNN to replace the 2-D CNN for feature extraction, which can improve the computation efficiency by directly feeding raw or the denoised data without any transformation or other manual work, and using simpler network structure; second, we optimize the classification further by replacing the softmax layer by the support vector machine (SVM) classifier, which is selected optimally from several typical classifiers, such as SVM, random forest, and extreme gradient boosting. Finally, the proposed method (1-D CNN+SVM) can achieve an average recognition accuracy of over 98% for five main classes of typical DAS signals in the oil pipeline monitoring application, which is superior to the conventional machine learning methods with fixed hand-crated feature. At the same time, both accuracy and efficiency of the method are better than those of the 2-D CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
victormanboy3发布了新的文献求助10
1秒前
4秒前
6秒前
Jasper应助cc采纳,获得10
6秒前
搜集达人应助wwaakk采纳,获得10
7秒前
吴子秋发布了新的文献求助10
8秒前
9秒前
小柚子发布了新的文献求助10
9秒前
10秒前
LIANG发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
14秒前
天外来物发布了新的文献求助20
14秒前
b6发布了新的文献求助10
15秒前
陈平安完成签到,获得积分20
16秒前
凶狠的食铁兽完成签到,获得积分10
16秒前
可爱的函函应助b6采纳,获得10
19秒前
20秒前
21秒前
21秒前
gaojie发布了新的文献求助10
24秒前
26秒前
26秒前
科目三应助LIANG采纳,获得10
27秒前
zz发布了新的文献求助10
27秒前
27秒前
28秒前
30秒前
30秒前
30秒前
笋尖266发布了新的文献求助10
31秒前
充电宝应助森气采纳,获得10
32秒前
棉袄完成签到 ,获得积分10
32秒前
现在到未来完成签到,获得积分10
33秒前
bbh发布了新的文献求助10
33秒前
33秒前
丘比特应助ying731采纳,获得10
34秒前
wind发布了新的文献求助50
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443647
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978440
捐赠科研通 2728341
什么是DOI,文献DOI怎么找? 1496490
科研通“疑难数据库(出版商)”最低求助积分说明 691648
邀请新用户注册赠送积分活动 689213