材料科学
基质(水族馆)
拉曼散射
纳米线
半导体
光降解
拉曼光谱
无定形固体
纳米技术
光电子学
化学工程
光化学
催化作用
化学
光催化
有机化学
光学
地质学
工程类
物理
海洋学
作者
Lili Yang,Yusi Peng,Yong Yang,Jianjun Liu,Zhi-Yuan Li,Yunfeng Ma,Zhang Zhang,Yuquan Wei,Shuai Li,Qing Huang,Nguyen Viet Long
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2018-08-07
卷期号:1 (9): 4516-4527
被引量:69
标识
DOI:10.1021/acsanm.8b00796
摘要
Hydrogenation was discovered to be an effective method to improve the surfaced-enhanced Raman scattering (SERS) performance of semiconductor TiO2 and enhance its enhancement factor (EF) by at least 3 orders of magnitude. The TiO2 substrate hydrogenated for 3 h showed the most remarkable SERS activity with a detection limit of 1 × 10–7 M for R6G and an EF of 1.20 × 106, which can be comparable to the Ag substrate. The remarkable SERS activities can be attributed to the chemical enhancement mechanism dominated by the enhanced photoinduced charge transfer (PICT) process between R6G and the oxygen vacancy-containing partly amorphous black TiO2 NWs substrate, as well as the electromagnetic enhancement (EM) derived from the metal-like local surface plasma resonance (LSPR) of the hydrogenated randomly oriented TiO2 nanowires. The first principle based on the density functional theory has been applied to demonstrate the appearance of tailed electron energy state produced by hydrogenation and provide the reasonable explanation for an easier PICT process, a stronger light absorption, and the enhanced SERS performance of our hydrogenated TiO2 substrates. Another impressive fact was that the photodegradation capability of TiO2 was also evidently improved. After 14 cycles of detection-and-degradation of R6G molecules, the substrates can still maintain regenerative and remarkable SERS activity. Ultrasensitive SERS activity and self-cleaning performance were successfully integrated on the black TiO2 NWs substrate by hydrogenation. Moreover, our substrate exhibited the excellent signal reproducibility and the outstanding stability of antioxidation in atmosphere thanks to the protection of the surface amorphous layer.
科研通智能强力驱动
Strongly Powered by AbleSci AI