Green and Sensitive Flexible Semiconductor SERS Substrates: Hydrogenated Black TiO2 Nanowires

材料科学 基质(水族馆) 拉曼散射 纳米线 半导体 光降解 拉曼光谱 无定形固体 纳米技术 光电子学 化学工程 光化学 催化作用 化学 光催化 有机化学 光学 地质学 工程类 物理 海洋学
作者
Lili Yang,Yusi Peng,Yong Yang,Jianjun Liu,Zhi-Yuan Li,Yunfeng Ma,Zhang Zhang,Yuquan Wei,Shuai Li,Qing Huang,Nguyen Viet Long
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:1 (9): 4516-4527 被引量:69
标识
DOI:10.1021/acsanm.8b00796
摘要

Hydrogenation was discovered to be an effective method to improve the surfaced-enhanced Raman scattering (SERS) performance of semiconductor TiO2 and enhance its enhancement factor (EF) by at least 3 orders of magnitude. The TiO2 substrate hydrogenated for 3 h showed the most remarkable SERS activity with a detection limit of 1 × 10–7 M for R6G and an EF of 1.20 × 106, which can be comparable to the Ag substrate. The remarkable SERS activities can be attributed to the chemical enhancement mechanism dominated by the enhanced photoinduced charge transfer (PICT) process between R6G and the oxygen vacancy-containing partly amorphous black TiO2 NWs substrate, as well as the electromagnetic enhancement (EM) derived from the metal-like local surface plasma resonance (LSPR) of the hydrogenated randomly oriented TiO2 nanowires. The first principle based on the density functional theory has been applied to demonstrate the appearance of tailed electron energy state produced by hydrogenation and provide the reasonable explanation for an easier PICT process, a stronger light absorption, and the enhanced SERS performance of our hydrogenated TiO2 substrates. Another impressive fact was that the photodegradation capability of TiO2 was also evidently improved. After 14 cycles of detection-and-degradation of R6G molecules, the substrates can still maintain regenerative and remarkable SERS activity. Ultrasensitive SERS activity and self-cleaning performance were successfully integrated on the black TiO2 NWs substrate by hydrogenation. Moreover, our substrate exhibited the excellent signal reproducibility and the outstanding stability of antioxidation in atmosphere thanks to the protection of the surface amorphous layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念念发布了新的文献求助10
1秒前
畅快的鱼发布了新的文献求助10
1秒前
搞怪藏今完成签到 ,获得积分10
2秒前
yu发布了新的文献求助10
2秒前
2秒前
qifa发布了新的文献求助10
2秒前
kingwhitewing完成签到,获得积分10
2秒前
3秒前
WTT发布了新的文献求助10
3秒前
仄兀完成签到,获得积分10
3秒前
四喜完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
Yenom完成签到 ,获得积分10
6秒前
7秒前
7秒前
SciGPT应助浩浩大人采纳,获得10
7秒前
迅速冰岚发布了新的文献求助10
7秒前
7秒前
WTT完成签到,获得积分20
8秒前
8秒前
苹果煎饼发布了新的文献求助10
8秒前
yan发布了新的文献求助10
8秒前
云肜发布了新的文献求助30
8秒前
Hello应助FatDanny采纳,获得10
9秒前
斯文败类应助娜行采纳,获得10
9秒前
庄小因完成签到,获得积分10
9秒前
热心市民小刘给热心市民小刘的求助进行了留言
9秒前
小钟完成签到,获得积分10
9秒前
徐慕源发布了新的文献求助10
9秒前
10秒前
深情安青应助任医生采纳,获得10
10秒前
10秒前
sherrinford完成签到,获得积分10
10秒前
科研通AI2S应助VDC采纳,获得10
11秒前
YAOYAO发布了新的文献求助10
11秒前
舒适豌豆完成签到,获得积分10
11秒前
Amber应助reck采纳,获得10
11秒前
Renhong完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678