Adaptive Cointegration Analysis and Modified RPCA With Continual Learning Ability for Monitoring Multimode Nonstationary Processes

计算机科学 过程(计算) 算法 协整 模式(计算机接口) 核密度估计 多模光纤 特征(语言学) 递归最小平方滤波器 数据挖掘 机器学习 人工智能 数学 自适应滤波器 统计 哲学 语言学 估计员 操作系统 电信 光纤
作者
Jingxin Zhang,Donghua Zhou,Maoyin Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 4841-4854 被引量:14
标识
DOI:10.1109/tcyb.2021.3140065
摘要

This study investigates nonstationary process monitoring under frequently varying modes, where new modes are allowed to emerge constantly. However, in current multimode process monitoring methods, generally, data are required from all possible modes and mode identification is realized by prior knowledge for multimode nonstationary processes. In contrast, recursive methods update a monitoring model based on the successive data. However, they forget the learned knowledge gracefully and fail to track drastic variations. Aimed at nonstationary data in each mode, this article proposes an adaptive cointegration analysis (CA) to distinguish real faults from normal variations, which updates a model once a normal sample is encountered and adapts to the gradual change in the cointegration relationship. Then, a modified recursive principal component analysis (RPCA) with continual learning ability is developed to deal with the remaining dynamic information, wherein elastic weight consolidation is adopted to consolidate the previously learned knowledge when a new mode appears. The preserved information is beneficial for establishing a more accurate model than traditional RPCA and avoiding drastic performance degradation for future similar modes. In addition, novel statistics are proposed with prior knowledge and thresholds are calculated by recursive kernel density estimation to enhance the performance. An in-depth comparison with recursive CA and recursive slow feature analysis is conducted to emphasize the superiority, in terms of the algorithm accuracy, memory properties, and computational complexity. Compared with state-of-the-art recursive algorithms, the effectiveness of the proposed method is shown by studying on a numerical case and a practical industrial system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助清脆大米采纳,获得10
1秒前
2秒前
派大星发布了新的文献求助10
2秒前
嘻嘻发布了新的文献求助10
3秒前
yinan发布了新的文献求助10
3秒前
sun发布了新的文献求助10
4秒前
6秒前
陈锦鲤完成签到 ,获得积分10
6秒前
小不遛w完成签到,获得积分10
6秒前
与我常在完成签到,获得积分20
7秒前
leolee完成签到 ,获得积分10
7秒前
西瓜完成签到,获得积分10
8秒前
8秒前
汉堡包应助嘻嘻嘻采纳,获得10
9秒前
Schiller应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
CipherSage应助1QA123采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小王应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
jeniwu完成签到 ,获得积分20
10秒前
阿童木发布了新的文献求助10
11秒前
豆豆发布了新的文献求助10
12秒前
jeniwu发布了新的文献求助10
13秒前
小蘑菇应助风中的老九采纳,获得10
14秒前
宁做我完成签到,获得积分10
15秒前
Z+V发布了新的文献求助10
15秒前
16秒前
17秒前
CodeCraft应助阿童木采纳,获得10
19秒前
19秒前
白小白发布了新的文献求助10
20秒前
NexusExplorer应助acihk采纳,获得10
21秒前
bjren发布了新的文献求助20
22秒前
微微完成签到 ,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503