化学
双酚A
催化作用
煅烧
锰
环境化学
矿化(土壤科学)
水处理
核化学
环境工程
有机化学
工程类
氮气
环氧树脂
作者
Li Chen,Tahir Maqbool,Ghazanfar Nazir,Congyu Hou,Yulong Yang,Guo Jian-ning,Xihui Zhang
标识
DOI:10.1016/j.memsci.2022.120602
摘要
Endocrine disrupting compounds (EDCs) in the aquatic systems are of growing concerns that could undermine drinking water safety. In this study, manganese (III) oxide (Mn2O3) based catalytic ceramic membrane (CCM) was developed for the activation of peroxymonosulfate (PMS), and its applicability has been tested in degrading the ten different EDCs (including bisphenol analogs (BPs)) in drinking water. The CCMs were synthesized at different calcination temperatures i.e., 850, 950, and 1150 °C. Optimal performance of CCMs/PMS was achieved at a higher degree of calcination. The CCMs/PMS has shown a potential to effectively degrade the EDCs at higher concentrations (mg/L) to trace levels (ng/L). The CCMs/PMS system adopted a non-radical pathway of degrading the EDCs through the extensive generation of singlet oxygen (1O2), as confirmed using quenching experiments and electron paramagnetic resonance (EPR) spectroscopy. 1O2-based oxidation process showed special selectivity for the decontamination of phenols and bisphenols. The long-term performance of CCMs/PMS showed good stability in degradation of the EDCs in drinking water, also with efficient mineralization (TOC removal >55%) and negligible release of Mn (0.004 wt%Mn/min). CCMs/PMS system also showed high potential in improving water quality by reducing the disinfection byproducts (DBPs) formation potential, highest recorded for bromodichloromethane (CHCl2Br, 100%) and lowest for dichloroacetic acids (TCAA, ∼50%). The study provided a highly efficient catalytic ceramic membrane based advanced oxidation process (AOPs) for effective degradation multiple of EDCs in drinking water, and the findings of this work can be a baseline for full-scale water treatment applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI