Joint Optimization of Auto-Scaling and Adaptive Service Placement in Edge Computing

计算机科学 复制品 分布式计算 缩放比例 GSM演进的增强数据速率 服务质量 边缘设备 工作量 边缘计算 资源配置 服务(商务) 云计算 计算机网络 人工智能 经济 艺术 视觉艺术 操作系统 经济 数学 几何学
作者
Ye Li,Haitao Zhang,Wei Tian,Huadóng Ma
标识
DOI:10.1109/icpads53394.2021.00121
摘要

In edge computing environment where network connections are often unstable and workload intensity changes frequently, the proper scaling mechanism and service placement strategy based on microservices are needed to ensure the edge services can be provided consistently. However, the common elastic scaling mechanism nowadays is threshold-based responsive scaling and has reaction time in the order of minutes, which is not suitable for delay-sensitive applications in the edge computing environment. Moreover, auto-scaling strategy and service replica placement are considered separately. If the scaled service replicas are misplaced on the edge nodes with limited resources or significant communication latency between upstream and downstream neighbours, the Quality of Service (QoS) cannot be guaranteed even with the auto-scaling mechanism. In this paper, we study the joint optimization of dynamic auto-scaling and adaptive service placement, and define it as a task delay minimization problem while satisfying resource and bandwidth constraints. Firstly, we design a multi-stage auto-scaling model based on workload prediction and performance evaluation of edge nodes to dynamically create an appropriate number of service replicas. Secondly, we propose a Dynamic Adaptive Service Placement (DASP) approach to iteratively place each service replica by using Adaptive Discrete Binary Particle Swarm Optimization (ADBPSO) algorithm. DASP can determine the current optimal placement strategy according to dynamic service replica scaling decision in a short time. The placement results of the current round will guide the optimization of the next cycle iteratively. The experimental evaluation shows that our approach significantly outperforms the existing methods in reducing the average task response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jianyu发布了新的文献求助10
1秒前
霖lin发布了新的文献求助10
1秒前
1秒前
海海发布了新的文献求助10
2秒前
2秒前
2秒前
斯文明杰发布了新的文献求助10
3秒前
汤泡泡完成签到,获得积分10
3秒前
xx完成签到,获得积分20
4秒前
浮游应助友好的小鸽子采纳,获得10
5秒前
5秒前
搜集达人应助CDX采纳,获得10
5秒前
erfc发布了新的文献求助10
5秒前
6秒前
mjq完成签到,获得积分10
6秒前
Nana1000发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助150
7秒前
8秒前
科研通AI5应助零零二采纳,获得10
9秒前
9秒前
铃科百合子完成签到,获得积分10
9秒前
浮生若梦完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
大个应助Jianyu采纳,获得10
11秒前
星空完成签到,获得积分10
11秒前
12秒前
小的金鱼发布了新的文献求助10
12秒前
lyt发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
大模型应助ceeray23采纳,获得20
14秒前
代杰居然发布了新的文献求助10
14秒前
14秒前
15秒前
Ki_Ayasato发布了新的文献求助10
17秒前
rrw发布了新的文献求助10
17秒前
小L同学发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099