Joint Optimization of Auto-Scaling and Adaptive Service Placement in Edge Computing

计算机科学 复制品 分布式计算 缩放比例 GSM演进的增强数据速率 服务质量 边缘设备 工作量 边缘计算 资源配置 服务(商务) 云计算 计算机网络 人工智能 经济 艺术 视觉艺术 操作系统 经济 数学 几何学
作者
Ye Li,Haitao Zhang,Wei Tian,Huadóng Ma
标识
DOI:10.1109/icpads53394.2021.00121
摘要

In edge computing environment where network connections are often unstable and workload intensity changes frequently, the proper scaling mechanism and service placement strategy based on microservices are needed to ensure the edge services can be provided consistently. However, the common elastic scaling mechanism nowadays is threshold-based responsive scaling and has reaction time in the order of minutes, which is not suitable for delay-sensitive applications in the edge computing environment. Moreover, auto-scaling strategy and service replica placement are considered separately. If the scaled service replicas are misplaced on the edge nodes with limited resources or significant communication latency between upstream and downstream neighbours, the Quality of Service (QoS) cannot be guaranteed even with the auto-scaling mechanism. In this paper, we study the joint optimization of dynamic auto-scaling and adaptive service placement, and define it as a task delay minimization problem while satisfying resource and bandwidth constraints. Firstly, we design a multi-stage auto-scaling model based on workload prediction and performance evaluation of edge nodes to dynamically create an appropriate number of service replicas. Secondly, we propose a Dynamic Adaptive Service Placement (DASP) approach to iteratively place each service replica by using Adaptive Discrete Binary Particle Swarm Optimization (ADBPSO) algorithm. DASP can determine the current optimal placement strategy according to dynamic service replica scaling decision in a short time. The placement results of the current round will guide the optimization of the next cycle iteratively. The experimental evaluation shows that our approach significantly outperforms the existing methods in reducing the average task response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶y发布了新的文献求助10
1秒前
2秒前
cxm666发布了新的文献求助10
3秒前
彩色靖儿完成签到 ,获得积分10
4秒前
田様应助JULY采纳,获得10
5秒前
5秒前
llly完成签到,获得积分10
5秒前
qijia发布了新的文献求助30
5秒前
Steven发布了新的文献求助10
6秒前
Akim应助echo采纳,获得10
6秒前
yydragen应助echo采纳,获得10
6秒前
充电宝应助echo采纳,获得10
6秒前
ding应助echo采纳,获得10
6秒前
香蕉觅云应助123采纳,获得10
6秒前
郭文汇发布了新的文献求助50
8秒前
roclie发布了新的文献求助10
10秒前
May应助bianlllll采纳,获得20
10秒前
自渡完成签到 ,获得积分10
10秒前
SciGPT应助浪吃采纳,获得10
15秒前
风筝与亭完成签到 ,获得积分10
17秒前
hecheng完成签到,获得积分10
17秒前
20秒前
niulugai完成签到,获得积分10
22秒前
22秒前
在水一方应助科研通管家采纳,获得10
24秒前
闪闪山水应助科研通管家采纳,获得10
24秒前
ED应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得20
25秒前
25秒前
闪闪山水应助科研通管家采纳,获得10
25秒前
东山小红应助科研通管家采纳,获得10
25秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
欣慰的舞仙完成签到,获得积分10
29秒前
希望天下0贩的0应助夏夏采纳,获得10
31秒前
32秒前
ABCofMEDICIBE发布了新的文献求助10
33秒前
枫叶荻花秋瑟瑟完成签到,获得积分10
34秒前
爆米花应助呵呵你个头采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150