Joint Optimization of Auto-Scaling and Adaptive Service Placement in Edge Computing

计算机科学 复制品 分布式计算 缩放比例 GSM演进的增强数据速率 服务质量 边缘设备 工作量 边缘计算 资源配置 服务(商务) 云计算 计算机网络 人工智能 艺术 几何学 数学 经济 经济 视觉艺术 操作系统
作者
Ye Li,Haitao Zhang,Wei Tian,Huadóng Ma
标识
DOI:10.1109/icpads53394.2021.00121
摘要

In edge computing environment where network connections are often unstable and workload intensity changes frequently, the proper scaling mechanism and service placement strategy based on microservices are needed to ensure the edge services can be provided consistently. However, the common elastic scaling mechanism nowadays is threshold-based responsive scaling and has reaction time in the order of minutes, which is not suitable for delay-sensitive applications in the edge computing environment. Moreover, auto-scaling strategy and service replica placement are considered separately. If the scaled service replicas are misplaced on the edge nodes with limited resources or significant communication latency between upstream and downstream neighbours, the Quality of Service (QoS) cannot be guaranteed even with the auto-scaling mechanism. In this paper, we study the joint optimization of dynamic auto-scaling and adaptive service placement, and define it as a task delay minimization problem while satisfying resource and bandwidth constraints. Firstly, we design a multi-stage auto-scaling model based on workload prediction and performance evaluation of edge nodes to dynamically create an appropriate number of service replicas. Secondly, we propose a Dynamic Adaptive Service Placement (DASP) approach to iteratively place each service replica by using Adaptive Discrete Binary Particle Swarm Optimization (ADBPSO) algorithm. DASP can determine the current optimal placement strategy according to dynamic service replica scaling decision in a short time. The placement results of the current round will guide the optimization of the next cycle iteratively. The experimental evaluation shows that our approach significantly outperforms the existing methods in reducing the average task response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rosy完成签到,获得积分10
刚刚
rjy完成签到 ,获得积分10
刚刚
1秒前
沙111发布了新的文献求助10
1秒前
MADKAI发布了新的文献求助10
1秒前
2秒前
zhoull完成签到 ,获得积分10
2秒前
2秒前
2秒前
学术蝗虫发布了新的文献求助10
2秒前
aurora完成签到,获得积分10
3秒前
bopbopbaby发布了新的文献求助200
3秒前
sll完成签到,获得积分10
3秒前
犹豫的一斩应助迅速冰岚采纳,获得10
3秒前
聂裕铭完成签到 ,获得积分10
3秒前
谦让成协完成签到,获得积分10
4秒前
4秒前
大个应助侦察兵采纳,获得10
4秒前
科研通AI5应助猪猪hero采纳,获得10
4秒前
4秒前
4秒前
WilsonT完成签到,获得积分10
4秒前
SDS发布了新的文献求助10
5秒前
LLL发布了新的文献求助10
5秒前
爆米花应助娜行采纳,获得10
6秒前
6秒前
虫二队长完成签到,获得积分10
6秒前
6秒前
manan发布了新的文献求助10
6秒前
铸一字错完成签到,获得积分10
6秒前
6秒前
诚c完成签到,获得积分10
6秒前
正在输入中应助niu1采纳,获得10
7秒前
7秒前
王大帅哥完成签到,获得积分10
7秒前
qianhuxinyu完成签到,获得积分10
7秒前
7秒前
烟雾发布了新的文献求助10
7秒前
8秒前
宁听白完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678