Automatic atrial fibrillation detection from short ECG signals: A hybrid deep learning approach

深度学习 计算机科学 人工智能 卷积神经网络 机器学习 特征提取 人工神经网络 模式识别(心理学) 特征(语言学) 过程(计算) F1得分 心律失常 心房颤动 医学 心脏病学 哲学 语言学 操作系统
作者
Xiaodan Wu,Zeyu Sui,Chao‐Hsien Chu,Guanjie Huang
出处
期刊:IISE transactions on healthcare systems engineering [Taylor & Francis]
卷期号:12 (1): 1-19 被引量:2
标识
DOI:10.1080/24725579.2021.1919249
摘要

Atrial fibrillation (AF) is one of the most common arrhythmic complications. Recently, researchers have attempted to use deep learning models, such as convolution neural networks (CNN) and/or Long Short-Term Memory (LSTM) neural networks to alleviate the tedious and time-consuming feature extraction process and achieve good classification results. In this paper we propose a hybrid CNN-LSTM model and use the short ECG signal from the PhysioNet/CinC Challenges 2017 dataset to explore and evaluate the relative performance of four data mining algorithms and three deep learning architectures. The original ECG signal, clinical diagnostic features and 169 features based on time domain, frequency domain and non-linear heart rate variability indicators were used for comparative experiments. The results show that with proper design and tuning, the Hybrid CNN-LSTM model performed much better than other benchmarked algorithms. It achieves 97.42% accuracy, 95.65% sensitivity, 97.14% specificity, 0.99 AUC (Area under the ROC curve) value and 0.98 F1 score. In general, with proper design and configuration, deep learning can be effective for automatic AF detection while data mining methods require domain knowledge and an extensive feature extraction and selection process to get satisfactory results. However, most machine learning algorithms, including deep learning models, perform the task as a black box, making it almost impossible to determine what features in the signal are critical to the analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的秘密完成签到 ,获得积分10
刚刚
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
小豆豆应助科研通管家采纳,获得30
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
田様应助sylnd126采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
英俊的铭应助赵哈哈采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得30
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
小鱼儿完成签到 ,获得积分10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
wulin应助科研通管家采纳,获得10
2秒前
3秒前
yurong完成签到,获得积分10
3秒前
温暖南莲完成签到,获得积分10
4秒前
科研通AI2S应助鱼鱼片片采纳,获得10
5秒前
6秒前
6秒前
7秒前
科研通AI2S应助Hexagram采纳,获得10
8秒前
独特冰安完成签到,获得积分10
8秒前
fifteen关注了科研通微信公众号
9秒前
YanZhe发布了新的文献求助10
12秒前
肖文泽完成签到,获得积分10
12秒前
星辰大海应助blueming采纳,获得10
14秒前
TIGun完成签到,获得积分10
14秒前
俭朴的跳跳糖完成签到 ,获得积分10
15秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232