Automatic atrial fibrillation detection from short ECG signals: A hybrid deep learning approach

深度学习 计算机科学 人工智能 卷积神经网络 机器学习 特征提取 人工神经网络 模式识别(心理学) 特征(语言学) 过程(计算) F1得分 心律失常 心房颤动 医学 心脏病学 哲学 语言学 操作系统
作者
Xiaodan Wu,Zeyu Sui,Chao‐Hsien Chu,Guanjie Huang
出处
期刊:IISE transactions on healthcare systems engineering [Informa]
卷期号:12 (1): 1-19 被引量:2
标识
DOI:10.1080/24725579.2021.1919249
摘要

Atrial fibrillation (AF) is one of the most common arrhythmic complications. Recently, researchers have attempted to use deep learning models, such as convolution neural networks (CNN) and/or Long Short-Term Memory (LSTM) neural networks to alleviate the tedious and time-consuming feature extraction process and achieve good classification results. In this paper we propose a hybrid CNN-LSTM model and use the short ECG signal from the PhysioNet/CinC Challenges 2017 dataset to explore and evaluate the relative performance of four data mining algorithms and three deep learning architectures. The original ECG signal, clinical diagnostic features and 169 features based on time domain, frequency domain and non-linear heart rate variability indicators were used for comparative experiments. The results show that with proper design and tuning, the Hybrid CNN-LSTM model performed much better than other benchmarked algorithms. It achieves 97.42% accuracy, 95.65% sensitivity, 97.14% specificity, 0.99 AUC (Area under the ROC curve) value and 0.98 F1 score. In general, with proper design and configuration, deep learning can be effective for automatic AF detection while data mining methods require domain knowledge and an extensive feature extraction and selection process to get satisfactory results. However, most machine learning algorithms, including deep learning models, perform the task as a black box, making it almost impossible to determine what features in the signal are critical to the analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Olivia发布了新的文献求助20
1秒前
1秒前
bkagyin应助一池楼台采纳,获得10
1秒前
好远的梦完成签到,获得积分10
1秒前
wen完成签到,获得积分10
1秒前
illusion完成签到,获得积分10
1秒前
pb完成签到,获得积分10
1秒前
2秒前
lujiajia完成签到,获得积分10
2秒前
完美世界应助Martin小生采纳,获得10
2秒前
老实的冰棍完成签到,获得积分10
3秒前
李爱国应助搞怪秋莲采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
lujiajia发布了新的文献求助10
4秒前
田様应助糖果屋采纳,获得10
5秒前
365完成签到,获得积分10
5秒前
6秒前
Kyrene发布了新的文献求助10
6秒前
erji25完成签到,获得积分10
6秒前
WHY发布了新的文献求助10
6秒前
sober发布了新的文献求助10
7秒前
脑洞疼应助酷酷的皮皮虾采纳,获得10
7秒前
田様应助dmr采纳,获得10
9秒前
9秒前
隐形曼青应助专一的书雪采纳,获得10
9秒前
muzililly发布了新的文献求助10
9秒前
NexusExplorer应助365采纳,获得10
10秒前
学术小虫发布了新的文献求助10
10秒前
tursun应助中恐采纳,获得200
10秒前
journey发布了新的文献求助10
11秒前
11秒前
ding应助huangyao采纳,获得10
11秒前
茜茜完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222200
求助须知:如何正确求助?哪些是违规求助? 2870768
关于积分的说明 8172106
捐赠科研通 2537838
什么是DOI,文献DOI怎么找? 1369757
科研通“疑难数据库(出版商)”最低求助积分说明 645582
邀请新用户注册赠送积分活动 619333