Single underwater image enhancement using integrated variational model

计算机科学 对比度(视觉) 图像质量 水下 人工智能 计算机视觉 快速傅里叶变换 能量(信号处理) 颜色校正 失真(音乐) 图像(数学) 算法 数学 海洋学 带宽(计算) 放大器 地质学 统计 计算机网络
作者
Nan Li,Guojia Hou,Yuhai Liu,Zhenkuan Pan,Lu Tan
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:129: 103660-103660 被引量:16
标识
DOI:10.1016/j.dsp.2022.103660
摘要

Underwater images often suffer from various degradations such as blurring, fog, low contrast, and color distortion because the light is absorbed and scattered when traveling through water. To solve critical issues, we establish a novel framework combining variational methods and pyramid technology to improve image quality in the frequency domain. Two novel variational models, the adaptive variational contrast enhancement (AVCE) model and the total Laplacian model, are designed with the aim of enhancing the contrast of foreground and preserving texture features at different scales. In order to solve these two models efficiently, we also exploit two optimal algorithms based on gradient descent method (GDM) and alternating direction method of multipliers (ADMM). In addition, fast Fourier transform (FFT) is applied for further accelerating the calculation procedure. Extensive experiments demonstrate that our approach achieves good performance on contrast enhancement, color correction, and texture enlargement for underwater images. Qualitative and quantitative comparisons further validate the superiority of our proposed method. In the quantitative comparisons, the proposed method achieves 1.6170, 0.6484, 0.6333, 0.0332, 4.0355, and 1.6843 scores in terms of underwater image quality measures (UIQM), underwater color image quality evaluation (UCIQE), cumulative probability of blur detection (CPBD), Energy, Entropy, and Contrast metrics, and obtains an average of 10% improvement compared with several state-of-the-art methods. The code is available online at: https://github.com/Hou-Guojia/UIE-IVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
minghai完成签到,获得积分20
1秒前
3秒前
Hello应助文静翅膀采纳,获得10
3秒前
WM发布了新的文献求助10
4秒前
欣喜面包完成签到,获得积分10
6秒前
6秒前
英俊的铭应助缥缈的飞荷采纳,获得10
6秒前
JY发布了新的文献求助10
7秒前
7秒前
恣意发布了新的文献求助10
9秒前
13秒前
15秒前
17秒前
情怀应助2023204306324采纳,获得10
17秒前
18秒前
人生如梦完成签到,获得积分10
18秒前
大力雁菡发布了新的文献求助10
18秒前
WxYzH完成签到,获得积分10
19秒前
19秒前
文静翅膀发布了新的文献求助10
19秒前
FashionBoy应助jersey采纳,获得10
20秒前
啾啾发布了新的文献求助10
20秒前
WanchengHu完成签到,获得积分10
21秒前
21秒前
maguodrgon发布了新的文献求助10
22秒前
贝壳完成签到,获得积分10
23秒前
一只呆果蝇完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
25秒前
26秒前
英俊的铭应助等待的网络采纳,获得10
26秒前
28秒前
28秒前
AU发布了新的文献求助30
29秒前
Baili应助健忘的飞雪采纳,获得10
29秒前
30秒前
啾啾完成签到,获得积分10
30秒前
2023204306324发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993490
求助须知:如何正确求助?哪些是违规求助? 3534168
关于积分的说明 11264831
捐赠科研通 3274008
什么是DOI,文献DOI怎么找? 1806220
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809662