Feature Selection and Detection Method of Weak Arc Faults in Photovoltaic Systems With Strong Noises Based on Stochastic Resonance

弧(几何) 特征(语言学) 断层(地质) 光伏系统 水准点(测量) 小波 计算机科学 故障检测与隔离 电弧故障断路器 算法 电子工程 工程类 人工智能 电气工程 电压 短路 地质学 哲学 机械工程 地震学 执行机构 语言学 地理 大地测量学
作者
Silei Chen,Yu Meng,Zhimin Xie,Xingwen Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:13
标识
DOI:10.1109/tim.2022.3181269
摘要

Due to strong noises from system components and measurement devices, arc faults would become weak to bring about detection challenges. Therefore, new measurements should be taken to acquire obvious arc fault features under complex operation disturbances in photovoltaic application scenes. In this paper, weak arc fault signals are acquired from the designed experimental and simulation platform with different system structures and signal acquisition devices firstly. Arc fault features would become weak in initial transient arc fault stages and higher frequency bands above 15.6 kHz, which could not be directly acquired by applying designed digital filters with existing wavelets. Next, the ant colony algorithm based stochastic resonance (ACA-SR) method is proposed to enhance arc fault features, which is verified to be effective under various inverter and resistor conditions. Then the feature enhancement ability of stochastic resonance method is evaluated to select the optimal arc fault feature, which is proved to have the average feature enhancement ability of 3.23 times. The selected wavelet is proved to have the superiority of symmetry and shorter support width. Finally, the proposed method is conducted with universal conditions containing weak arc faults via numerical and hardware tests, which is proved to improve the detection accuracy of arc faults by 24.57% on average respectively compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助久违采纳,获得10
刚刚
蝉鸣完成签到,获得积分10
1秒前
Kiling发布了新的文献求助10
2秒前
6秒前
威武的翠安完成签到 ,获得积分10
8秒前
8秒前
光热效应发布了新的文献求助10
11秒前
愤怒的豌豆完成签到,获得积分10
13秒前
Kiling完成签到,获得积分10
13秒前
22秒前
潇潇雨歇发布了新的文献求助20
23秒前
23秒前
杰桑的西地那非完成签到 ,获得积分10
23秒前
打打应助nn采纳,获得10
24秒前
马66完成签到 ,获得积分10
25秒前
非要叫我起个昵称完成签到,获得积分10
26秒前
28秒前
guangwow完成签到,获得积分10
28秒前
光热效应完成签到,获得积分20
30秒前
田様应助科研通管家采纳,获得10
32秒前
32秒前
Hello应助科研通管家采纳,获得10
32秒前
烟花应助科研通管家采纳,获得10
32秒前
将将将应助科研通管家采纳,获得20
32秒前
32秒前
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
N型半导体发布了新的文献求助10
33秒前
可爱的函函应助cat采纳,获得50
33秒前
西柚完成签到,获得积分10
33秒前
gy关闭了gy文献求助
34秒前
yx_cheng应助69采纳,获得30
34秒前
饺子完成签到,获得积分10
35秒前
YQF完成签到,获得积分10
36秒前
史迪奇大王完成签到,获得积分10
36秒前
李健应助N型半导体采纳,获得10
37秒前
37秒前
英俊的铭应助lyn采纳,获得10
38秒前
lb001完成签到 ,获得积分10
38秒前
干饭大王应助论文顺利采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351