异质结
光催化
材料科学
钙钛矿(结构)
载流子
化学工程
光电子学
纳米技术
化学
催化作用
工程类
有机化学
作者
Zhipeng Zhang,Bingzhe Wang,Hai‐Bing Zhao,Jin‐Feng Liao,Zichun Zhou,Tanghao Liu,Bingchen He,Qi Wei,Shi Chen,Hong‐Yan Chen,Dai‐Bin Kuang,Ying Li,Guichuan Xing
标识
DOI:10.1016/j.apcatb.2022.121358
摘要
Lead-free double perovskites with superior stability have been considered as promising non-toxic substitutes to their lead-contained counterparts in photocatalysis. However, the severe charge recombination greatly restricts their potential as high-performance photocatalysts. Herein, for the first time, we present a self-assembled heterostructure of lead-free double perovskite Cs 2 AgBiBr 6 nanocrystals (NCs) on the surface of MXene nanosheets via mutual electrostatic attraction. The presence of MXene nanosheets effectively promotes the formation of free charge carriers in Cs 2 AgBiBr 6 NCs via reducing the exciton binding energy. Additionally, the ultrafast photogenerated electron transfer from Cs 2 AgBiBr 6 to MXene with a timescale of 1.1 ps largely prolongs the charge carrier lifetime by two times. As a result of the efficient charge separation and electron extraction, the Cs 2 AgBiBr 6 /MXene heterostructures achieve a high photoelectron consumption yield of 50.6 µmol g −1 h −1 for photocatalytic CO 2 reduction, which surpasses most previously reported lead-free perovskite-based catalysts. • A novel self-assembled double perovskite/MXene heterostructure was prepared through a facile solution method. • The presence of MXene nanosheets effectively prolongs the charge carrier lifetime by two times. • The Cs 2 AgBiBr 6 /MXene heterostructures achieve a high electron consumption yield for photocatalytic CO 2 reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI