Metallic Mo2C Quantum Dots Confined in Functional Carbon Nanofiber Films toward Efficient Sodium Storage: Heterogeneous Interface Engineering and Charge-Storage Mechanism

阳极 电化学 材料科学 碳纳米纤维 量子点 电极 插层(化学) 储能 碳纤维 纳米技术 化学工程 碳纳米管 复合材料 无机化学 化学 工程类 物理 复合数 物理化学 量子力学 功率(物理)
作者
Guangyuan Wang,Yan Wang,Xuan Sun,Yang Liu,Ping Nie,Linrui Hou,Limin Chang,Changzhou Yuan
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (1): 1114-1125 被引量:20
标识
DOI:10.1021/acsaem.1c03477
摘要

Sodium ion capacitors (SICs) have drawn enormous interest due to their cost efficiency, superb power/energy densities, and long-span service life. Nevertheless, the imbalance of two involved electrodes in both kinetics and stability, mainly originating from battery-type anodes, restricts their practical application. Herein, we first propose a heterointerface engineering strategy to design a flexible self-supporting hybrid film anode, where metallic Mo2C quantum dots (QDs, ∼41.1 wt %) self-encapsulated in N-doped carbon nanofibers (N-CNFs) thanks to the interfacial interactions, toward advanced SICs. The synergistic effect of structural/compositional merits is highlighted with the induced interface coupling Mo–N–C toward enhanced electrochemical kinetics/stability and reinforced electrode structural integrity. The accelerating mechanism of electron migration at the heterogeneous interfaces is unveiled with density functional theory calculations. The obtained Mo2C QDs@N-CNFs film electrode is rendered with a competitive capacity of ∼160.9 mAh g–1 at 5.0 A g–1, robust pseudocapacitive contribution, and long-duration cycling stability. Besides, the Mo2C QDs@N-CNFs-based SICs exhibit exceptional electrochemical properties. More significantly, the in-depth insights into the unique Na+-(de)intercalation mechanism of Mo2C QDs@N-CNFs are rationally proposed with in situ X-ray diffraction and electrochemical techniques. This promises the enormous potential of our designed carbon-matrix-confined Mo2C QDs nanohybrid for SICs and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rain发布了新的文献求助10
刚刚
1111应助科研通管家采纳,获得10
1秒前
2秒前
chall应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
jelifo应助科研通管家采纳,获得20
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
1111应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
胡树发布了新的文献求助30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Cling应助科研通管家采纳,获得20
2秒前
Cling应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
jelifo应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得30
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
Millie完成签到,获得积分10
3秒前
3秒前
3秒前
SCI完成签到 ,获得积分10
3秒前
3秒前
唠叨的富发布了新的文献求助10
4秒前
Leon完成签到,获得积分10
5秒前
Alkaid驳回了Hello应助
5秒前
5秒前
天真凡灵完成签到,获得积分10
5秒前
LZT发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748