As conventional therapeutics failed to provide satisfied outcomes against one of the most prevalent cancers, colorectal cancer (CRC), we purposed to implicate MicroRNA (miR)-34a, as a major tumor suppressor, to be delivered by tumor-derived exosomes (TEXs) and investigated its anti-tumor functions in-vivo.TEXs were isolated from CT-26 cell line and loaded with miR-34a mimic. Then, mice bearing CRC were treated with miR-34a-enriched TEX (TEX-miR-34a) and then examined for the relative tumor-suppressive impacts of the TEX as well as its potential in promoting an anti-tumor immune response.TEX-miR-34a significantly reduced tumor size and prolonged survival of mice bearing CRC. TEX-miR-34a was able to diminish gene expressions related to invasion, angiogenesis and immune evasion. It was also capable of inducing T cell polarization toward CD8+ T subsets among tumor-infiltrating lymphocytes, draining lymph nodes (DLNs) and spleen cells. Moreover, cytotoxic T cells were professionally induced in mice receiving TEX-miR-34a and the secretion of interleukin (IL)-6, IL-17A and tumor necrosis factor (TGF)-β was reduced in DLNs. However, the enhanced levels of interferon-γ were evaluated in DLN and spleen displaying the polarization of anti-tumor immune responses. Interestingly, mice receiving TEX alone showed a noticeable reduction in certain oncogenic gene expressions as well as IL-17A secretion in DLNs.TEX-miR-34a demonstrated the potential to induce beneficial anti-tumor immune responses and TEXs, aside from the delivery function of miRNA, revealed certain anti-tumor beneficial characteristics which could introduce TEX-miR-34a as a promising approach in CRC combination therapies.