A Robust Metabolic Enzyme-Based Prognostic Signature for Head and Neck Squamous Cell Carcinoma

头颈部鳞状细胞癌 基因签名 列线图 癌症研究 癌变 肿瘤科 头颈部癌 生物 医学 癌症 内科学 生物信息学 计算生物学 基因 基因表达 遗传学
作者
Zizhao Mai,Huan Chen,Mingshu Huang,Xinyuan Zhao,Li Cui
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:2
标识
DOI:10.3389/fonc.2021.770241
摘要

Head and neck squamous cell carcinoma (HNSCC) is still a menace to public wellbeing globally. However, the underlying molecular events influencing the carcinogenesis and prognosis of HNSCC are poorly known.Gene expression profiles of The Cancer Genome Atlas (TCGA) HNSCC dataset and GSE37991 were downloaded from the TCGA database and gene expression omnibus, respectively. The common differentially expressed metabolic enzymes (DEMEs) between HNSCC tissues and normal controls were screened out. Then a DEME-based molecular signature and a clinically practical nomogram model were constructed and validated.A total of 23 commonly upregulated and 9 commonly downregulated DEMEs were identified in TCGA HNSCC and GSE37991. Gene ontology analyses of the common DEMEs revealed that alpha-amino acid metabolic process, glycosyl compound metabolic process, and cellular amino acid metabolic process were enriched. Based on the TCGA HNSCC cohort, we have built up a robust DEME-based prognostic signature including HPRT1, PLOD2, ASNS, TXNRD1, CYP27B1, and FUT6 for predicting the clinical outcome of HNSCC. Furthermore, this prognosis signature was successfully validated in another independent cohort GSE65858. Moreover, a potent prognostic signature-based nomogram model was constructed to provide personalized therapeutic guidance for treating HNSCC. In vitro experiment revealed that the knockdown of TXNRD1 suppressed malignant activities of HNSCC cells.Our study has successfully developed a robust DEME-based signature for predicting the prognosis of HNSCC. Moreover, the nomogram model might provide useful guidance for the precision treatment of HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xzn1123应助sluck采纳,获得10
刚刚
阿佑完成签到,获得积分10
刚刚
刚刚
shenqian完成签到,获得积分10
刚刚
小七2022发布了新的文献求助10
刚刚
刚刚
王文静应助发文章12138采纳,获得10
1秒前
美满友灵发布了新的文献求助10
2秒前
汉堡包应助111采纳,获得10
2秒前
xpdnpu完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
hunter发布了新的文献求助10
3秒前
3秒前
阿佑发布了新的文献求助10
4秒前
zhaoyw完成签到,获得积分10
4秒前
lee完成签到,获得积分10
4秒前
高越完成签到,获得积分10
5秒前
wcy完成签到,获得积分10
5秒前
倩倩发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
橙皮苷发布了新的文献求助20
7秒前
Blank发布了新的文献求助10
7秒前
李健应助平淡的凌寒采纳,获得10
7秒前
科研通AI5应助自信的易文采纳,获得10
8秒前
9秒前
酷酷的季节完成签到 ,获得积分10
9秒前
9秒前
10秒前
英姑应助认真的映安采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
创新发布了新的文献求助10
10秒前
10秒前
Akim应助deepsorrow采纳,获得10
11秒前
11秒前
思源应助L112233采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663580
求助须知:如何正确求助?哪些是违规求助? 3224069
关于积分的说明 9754981
捐赠科研通 2933971
什么是DOI,文献DOI怎么找? 1606503
邀请新用户注册赠送积分活动 758539
科研通“疑难数据库(出版商)”最低求助积分说明 734891