Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics

粘度 免疫球蛋白轻链 逻辑回归 变量(数学) 线性回归 化学 生物系统 人工智能 数学 抗体 计算机科学 统计 物理 热力学 免疫学 生物 数学分析
作者
Pin‐Kuang Lai,Austin S. Gallegos,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:mAbs [Informa]
卷期号:14 (1) 被引量:33
标识
DOI:10.1080/19420862.2022.2026208
摘要

Machine learning has been recently used to predict therapeutic antibody aggregation rates and viscosity at high concentrations (150 mg/ml). These works focused on commercially available antibodies, which may have been optimized for stability. In this study, we measured accelerated aggregation rates at 45°C and viscosity at 150 mg/ml for 20 preclinical and clinical-stage antibodies. Features obtained from molecular dynamics simulations of the full-length antibody and sequences were used for machine learning model construction. We found a k-nearest neighbors regression model with two features, spatial positive charge map on the CDRH2 and solvent-accessible surface area of hydrophobic residues on the variable fragment, gives the best performance for predicting antibody aggregation rates (r = 0.89). For the viscosity classification model, the model with the highest accuracy is a logistic regression model with two features, spatial negative charge map on the heavy chain variable region and spatial negative charge map on the light chain variable region. The accuracy and the area under precision recall curve of the classification model from validation tests are 0.86 and 0.70, respectively. In addition, we combined data from another 27 commercial mAbs to develop a viscosity predictive model. The best model is a logistic regression model with two features, number of hydrophobic residues on the light chain variable region and net charges on the light chain variable region. The accuracy and the area under precision recall curve of the classification model are 0.85 and 0.6, respectively. The aggregation rates and viscosity models can be used to predict antibody stability to facilitate pharmaceutical development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
icedoctor关注了科研通微信公众号
1秒前
1秒前
1秒前
ryl发布了新的文献求助10
1秒前
王路飞发布了新的文献求助10
1秒前
无花果应助缓慢的书蝶采纳,获得30
2秒前
迷路盼易发布了新的文献求助10
2秒前
2秒前
pgg完成签到,获得积分10
4秒前
4秒前
5秒前
SHYSHYLONG发布了新的文献求助10
6秒前
6秒前
7秒前
Marvin42完成签到,获得积分10
7秒前
8秒前
8秒前
涂常青发布了新的文献求助10
9秒前
流星发布了新的文献求助10
10秒前
AMAME12完成签到,获得积分20
12秒前
12秒前
盛夏如花发布了新的文献求助10
12秒前
icedoctor发布了新的文献求助10
13秒前
高高的善斓完成签到 ,获得积分10
13秒前
星辰大海应助TAA66采纳,获得10
13秒前
Hello应助XIA采纳,获得10
14秒前
AMAME12发布了新的文献求助10
14秒前
丁昆发布了新的文献求助10
15秒前
小二郎应助听风采纳,获得10
15秒前
烟花应助Dylan采纳,获得10
15秒前
科研小李完成签到,获得积分10
16秒前
16秒前
妮妮完成签到,获得积分20
17秒前
勤奋的晓晓应助yang采纳,获得10
18秒前
18秒前
19秒前
小二郎应助lxz采纳,获得10
19秒前
ding应助丁昆采纳,获得10
20秒前
JTR发布了新的文献求助10
20秒前
ding应助勤奋小张采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302