Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics

粘度 免疫球蛋白轻链 逻辑回归 变量(数学) 线性回归 化学 生物系统 人工智能 数学 抗体 计算机科学 统计 物理 热力学 免疫学 生物 数学分析
作者
Pin‐Kuang Lai,Austin S. Gallegos,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:mAbs [Informa]
卷期号:14 (1) 被引量:33
标识
DOI:10.1080/19420862.2022.2026208
摘要

Machine learning has been recently used to predict therapeutic antibody aggregation rates and viscosity at high concentrations (150 mg/ml). These works focused on commercially available antibodies, which may have been optimized for stability. In this study, we measured accelerated aggregation rates at 45°C and viscosity at 150 mg/ml for 20 preclinical and clinical-stage antibodies. Features obtained from molecular dynamics simulations of the full-length antibody and sequences were used for machine learning model construction. We found a k-nearest neighbors regression model with two features, spatial positive charge map on the CDRH2 and solvent-accessible surface area of hydrophobic residues on the variable fragment, gives the best performance for predicting antibody aggregation rates (r = 0.89). For the viscosity classification model, the model with the highest accuracy is a logistic regression model with two features, spatial negative charge map on the heavy chain variable region and spatial negative charge map on the light chain variable region. The accuracy and the area under precision recall curve of the classification model from validation tests are 0.86 and 0.70, respectively. In addition, we combined data from another 27 commercial mAbs to develop a viscosity predictive model. The best model is a logistic regression model with two features, number of hydrophobic residues on the light chain variable region and net charges on the light chain variable region. The accuracy and the area under precision recall curve of the classification model are 0.85 and 0.6, respectively. The aggregation rates and viscosity models can be used to predict antibody stability to facilitate pharmaceutical development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jwxstc发布了新的文献求助10
1秒前
1秒前
1秒前
akber123发布了新的文献求助30
1秒前
Yxian发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
科研通AI6应助dm11采纳,获得10
2秒前
3秒前
爆米花应助羊咩咩咩采纳,获得10
4秒前
kekemu完成签到,获得积分10
5秒前
momo发布了新的文献求助30
6秒前
6秒前
yyy发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
豆豆发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助jwxstc采纳,获得10
9秒前
9秒前
充电宝应助眯眯眼的世界采纳,获得10
10秒前
10秒前
迷路夜山发布了新的文献求助10
11秒前
小马甲应助轮回1奇点采纳,获得10
11秒前
小张快跑完成签到,获得积分20
11秒前
啊啊完成签到 ,获得积分10
11秒前
12秒前
plain发布了新的文献求助10
12秒前
starry完成签到,获得积分10
13秒前
所所应助李子昂采纳,获得10
13秒前
13秒前
14秒前
Wll发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
小张快跑发布了新的文献求助10
15秒前
16秒前
满天星完成签到,获得积分20
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583383
求助须知:如何正确求助?哪些是违规求助? 4667241
关于积分的说明 14766122
捐赠科研通 4609415
什么是DOI,文献DOI怎么找? 2529196
邀请新用户注册赠送积分活动 1498411
关于科研通互助平台的介绍 1467061