Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics

粘度 免疫球蛋白轻链 逻辑回归 变量(数学) 线性回归 化学 生物系统 人工智能 数学 抗体 计算机科学 统计 物理 热力学 免疫学 生物 数学分析
作者
Pin‐Kuang Lai,Austin S. Gallegos,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:mAbs [Informa]
卷期号:14 (1) 被引量:33
标识
DOI:10.1080/19420862.2022.2026208
摘要

Machine learning has been recently used to predict therapeutic antibody aggregation rates and viscosity at high concentrations (150 mg/ml). These works focused on commercially available antibodies, which may have been optimized for stability. In this study, we measured accelerated aggregation rates at 45°C and viscosity at 150 mg/ml for 20 preclinical and clinical-stage antibodies. Features obtained from molecular dynamics simulations of the full-length antibody and sequences were used for machine learning model construction. We found a k-nearest neighbors regression model with two features, spatial positive charge map on the CDRH2 and solvent-accessible surface area of hydrophobic residues on the variable fragment, gives the best performance for predicting antibody aggregation rates (r = 0.89). For the viscosity classification model, the model with the highest accuracy is a logistic regression model with two features, spatial negative charge map on the heavy chain variable region and spatial negative charge map on the light chain variable region. The accuracy and the area under precision recall curve of the classification model from validation tests are 0.86 and 0.70, respectively. In addition, we combined data from another 27 commercial mAbs to develop a viscosity predictive model. The best model is a logistic regression model with two features, number of hydrophobic residues on the light chain variable region and net charges on the light chain variable region. The accuracy and the area under precision recall curve of the classification model are 0.85 and 0.6, respectively. The aggregation rates and viscosity models can be used to predict antibody stability to facilitate pharmaceutical development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
momo完成签到,获得积分10
2秒前
科研通AI2S应助qqwrv采纳,获得10
3秒前
3秒前
顾矜应助Sarah采纳,获得10
6秒前
宇文念真完成签到,获得积分10
8秒前
susu完成签到,获得积分10
10秒前
领导范儿应助zhanks采纳,获得10
10秒前
juan发布了新的文献求助10
11秒前
lyl19880908应助Emma采纳,获得10
11秒前
搜集达人应助最好的采纳,获得10
12秒前
Billy发布了新的文献求助200
18秒前
超级柜子完成签到,获得积分10
18秒前
23秒前
充电宝应助大鱼采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
账户已注销应助科研通管家采纳,获得200
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
27秒前
orixero应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
28秒前
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
无花果应助qs采纳,获得10
30秒前
蛋蛋1完成签到,获得积分10
31秒前
哎呦喂完成签到 ,获得积分10
32秒前
32秒前
熊亚丹发布了新的文献求助10
33秒前
33秒前
NexusExplorer应助sunny采纳,获得10
34秒前
guantlv完成签到,获得积分10
34秒前
39秒前
39秒前
奶茶麻辣烫完成签到,获得积分10
39秒前
小马甲应助鱼鱼片片采纳,获得10
41秒前
ai zs发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055401
求助须知:如何正确求助?哪些是违规求助? 2712227
关于积分的说明 7430195
捐赠科研通 2357037
什么是DOI,文献DOI怎么找? 1248528
科研通“疑难数据库(出版商)”最低求助积分说明 606737
版权声明 596093