Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics

粘度 免疫球蛋白轻链 逻辑回归 变量(数学) 线性回归 化学 生物系统 人工智能 数学 抗体 计算机科学 统计 物理 热力学 免疫学 生物 数学分析
作者
Pin‐Kuang Lai,Austin S. Gallegos,Neil Mody,Hasige A. Sathish,Bernhardt L. Trout
出处
期刊:mAbs [Landes Bioscience]
卷期号:14 (1) 被引量:33
标识
DOI:10.1080/19420862.2022.2026208
摘要

Machine learning has been recently used to predict therapeutic antibody aggregation rates and viscosity at high concentrations (150 mg/ml). These works focused on commercially available antibodies, which may have been optimized for stability. In this study, we measured accelerated aggregation rates at 45°C and viscosity at 150 mg/ml for 20 preclinical and clinical-stage antibodies. Features obtained from molecular dynamics simulations of the full-length antibody and sequences were used for machine learning model construction. We found a k-nearest neighbors regression model with two features, spatial positive charge map on the CDRH2 and solvent-accessible surface area of hydrophobic residues on the variable fragment, gives the best performance for predicting antibody aggregation rates (r = 0.89). For the viscosity classification model, the model with the highest accuracy is a logistic regression model with two features, spatial negative charge map on the heavy chain variable region and spatial negative charge map on the light chain variable region. The accuracy and the area under precision recall curve of the classification model from validation tests are 0.86 and 0.70, respectively. In addition, we combined data from another 27 commercial mAbs to develop a viscosity predictive model. The best model is a logistic regression model with two features, number of hydrophobic residues on the light chain variable region and net charges on the light chain variable region. The accuracy and the area under precision recall curve of the classification model are 0.85 and 0.6, respectively. The aggregation rates and viscosity models can be used to predict antibody stability to facilitate pharmaceutical development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助爱学习的曼卉采纳,获得10
1秒前
高高应助ZHAOXIN采纳,获得10
2秒前
倩青春发布了新的文献求助10
3秒前
CipherSage应助喜悦的秋柔采纳,获得10
5秒前
6秒前
7秒前
8秒前
11秒前
开朗依霜发布了新的文献求助10
11秒前
云舒发布了新的文献求助10
13秒前
务实青筠发布了新的文献求助10
14秒前
张浩关注了科研通微信公众号
15秒前
明亮芯发布了新的文献求助10
15秒前
liuxh123发布了新的文献求助10
16秒前
魏立翔完成签到,获得积分10
17秒前
ED应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
21秒前
21秒前
牛诗悦完成签到,获得积分10
21秒前
孙福禄应助爱学习的曼卉采纳,获得10
23秒前
满天星发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652